Cargando…

Combinatorial network of primary and secondary microRNA-driven regulatory mechanisms

Recent miRNA transfection experiments show strong evidence that miRNAs influence not only their target but also non-target genes; the precise mechanism of the extended regulatory effects of miRNAs remains to be elucidated. A hypothetical two-layer regulatory network in which transcription factors (T...

Descripción completa

Detalles Bibliográficos
Autores principales: Tu, Kang, Yu, Hui, Hua, You-Jia, Li, Yuan-Yuan, Liu, Lei, Xie, Lu, Li, Yi-Xue
Formato: Texto
Lenguaje:English
Publicado: Oxford University Press 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2764428/
https://www.ncbi.nlm.nih.gov/pubmed/19671526
http://dx.doi.org/10.1093/nar/gkp638
Descripción
Sumario:Recent miRNA transfection experiments show strong evidence that miRNAs influence not only their target but also non-target genes; the precise mechanism of the extended regulatory effects of miRNAs remains to be elucidated. A hypothetical two-layer regulatory network in which transcription factors (TFs) function as important mediators of miRNA-initiated regulatory effects was envisioned, and a comprehensive strategy was developed to map such miRNA-centered regulatory cascades. Given gene expression profiles after miRNA-perturbation, along with putative miRNA–gene and TF–gene regulatory relationships, highly likely degraded targets were fetched by a non-parametric statistical test; miRNA-regulated TFs and their downstream targets were mined out through linear regression modeling. When applied to 53 expression datasets, this strategy discovered combinatorial regulatory networks centered around 19 miRNAs. A tumor-related regulatory network was diagrammed as an example, with the important tumor-related regulators TP53 and MYC playing hub connector roles. A web server is provided for query and analysis of all reported data in this article. Our results reinforce the growing awareness that non-coding RNAs may play key roles in the transcription regulatory network. Our strategy could be applied to reveal conditional regulatory pathways in many more cellular contexts.