Cargando…
Unsupervised statistical clustering of environmental shotgun sequences
BACKGROUND: The development of effective environmental shotgun sequence binning methods remains an ongoing challenge in algorithmic analysis of metagenomic data. While previous methods have focused primarily on supervised learning involving extrinsic data, a first-principles statistical model combin...
Autores principales: | Kislyuk, Andrey, Bhatnagar, Srijak, Dushoff, Jonathan, Weitz, Joshua S |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2765972/ https://www.ncbi.nlm.nih.gov/pubmed/19799776 http://dx.doi.org/10.1186/1471-2105-10-316 |
Ejemplares similares
-
Genomic fluidity: an integrative view of gene diversity within microbial populations
por: Kislyuk, Andrey O, et al.
Publicado: (2011) -
Performance determinants of unsupervised clustering methods for microbiome data
por: Shi, Yushu, et al.
Publicado: (2022) -
Using Growing Self-Organising Maps to Improve the Binning Process in Environmental Whole-Genome Shotgun Sequencing
por: Chan, Chon-Kit Kenneth, et al.
Publicado: (2008) -
Accurate and sensitive detection of microbial eukaryotes from whole metagenome shotgun sequencing
por: Lind, Abigail L., et al.
Publicado: (2021) -
metaSpectraST: an unsupervised and database-independent analysis workflow for metaproteomic MS/MS data using spectrum clustering
por: Hao, Chunlin, et al.
Publicado: (2023)