Cargando…
Hybrid Mammogram Classification Using Rough Set and Fuzzy Classifier
We propose a computer aided detection (CAD) system for the detection and classification of suspicious regions in mammographic images. This system combines a dimensionality reduction module (using principal component analysis), a feature extraction module (using independent component analysis), and a...
Autores principales: | , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2766069/ https://www.ncbi.nlm.nih.gov/pubmed/19859576 http://dx.doi.org/10.1155/2009/680508 |
_version_ | 1782173195517820928 |
---|---|
author | Abu-Amara, Fadi Abdel-Qader, Ikhlas |
author_facet | Abu-Amara, Fadi Abdel-Qader, Ikhlas |
author_sort | Abu-Amara, Fadi |
collection | PubMed |
description | We propose a computer aided detection (CAD) system for the detection and classification of suspicious regions in mammographic images. This system combines a dimensionality reduction module (using principal component analysis), a feature extraction module (using independent component analysis), and a feature subset selection module (using rough set model). Rough set model is used to reduce the effect of data inconsistency while a fuzzy classifier is integrated into the system to label subimages into normal or abnormal regions. The experimental results show that this system has an accuracy of 84.03% and a recall percentage of 87.28%. |
format | Text |
id | pubmed-2766069 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2009 |
publisher | Hindawi Publishing Corporation |
record_format | MEDLINE/PubMed |
spelling | pubmed-27660692009-10-26 Hybrid Mammogram Classification Using Rough Set and Fuzzy Classifier Abu-Amara, Fadi Abdel-Qader, Ikhlas Int J Biomed Imaging Research Article We propose a computer aided detection (CAD) system for the detection and classification of suspicious regions in mammographic images. This system combines a dimensionality reduction module (using principal component analysis), a feature extraction module (using independent component analysis), and a feature subset selection module (using rough set model). Rough set model is used to reduce the effect of data inconsistency while a fuzzy classifier is integrated into the system to label subimages into normal or abnormal regions. The experimental results show that this system has an accuracy of 84.03% and a recall percentage of 87.28%. Hindawi Publishing Corporation 2009 2009-10-22 /pmc/articles/PMC2766069/ /pubmed/19859576 http://dx.doi.org/10.1155/2009/680508 Text en Copyright © 2009 F. Abu-Amara and I. Abdel-Qader. https://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Abu-Amara, Fadi Abdel-Qader, Ikhlas Hybrid Mammogram Classification Using Rough Set and Fuzzy Classifier |
title | Hybrid Mammogram Classification Using Rough Set and Fuzzy Classifier |
title_full | Hybrid Mammogram Classification Using Rough Set and Fuzzy Classifier |
title_fullStr | Hybrid Mammogram Classification Using Rough Set and Fuzzy Classifier |
title_full_unstemmed | Hybrid Mammogram Classification Using Rough Set and Fuzzy Classifier |
title_short | Hybrid Mammogram Classification Using Rough Set and Fuzzy Classifier |
title_sort | hybrid mammogram classification using rough set and fuzzy classifier |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2766069/ https://www.ncbi.nlm.nih.gov/pubmed/19859576 http://dx.doi.org/10.1155/2009/680508 |
work_keys_str_mv | AT abuamarafadi hybridmammogramclassificationusingroughsetandfuzzyclassifier AT abdelqaderikhlas hybridmammogramclassificationusingroughsetandfuzzyclassifier |