Cargando…

Hybrid Mammogram Classification Using Rough Set and Fuzzy Classifier

We propose a computer aided detection (CAD) system for the detection and classification of suspicious regions in mammographic images. This system combines a dimensionality reduction module (using principal component analysis), a feature extraction module (using independent component analysis), and a...

Descripción completa

Detalles Bibliográficos
Autores principales: Abu-Amara, Fadi, Abdel-Qader, Ikhlas
Formato: Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2766069/
https://www.ncbi.nlm.nih.gov/pubmed/19859576
http://dx.doi.org/10.1155/2009/680508
_version_ 1782173195517820928
author Abu-Amara, Fadi
Abdel-Qader, Ikhlas
author_facet Abu-Amara, Fadi
Abdel-Qader, Ikhlas
author_sort Abu-Amara, Fadi
collection PubMed
description We propose a computer aided detection (CAD) system for the detection and classification of suspicious regions in mammographic images. This system combines a dimensionality reduction module (using principal component analysis), a feature extraction module (using independent component analysis), and a feature subset selection module (using rough set model). Rough set model is used to reduce the effect of data inconsistency while a fuzzy classifier is integrated into the system to label subimages into normal or abnormal regions. The experimental results show that this system has an accuracy of 84.03% and a recall percentage of 87.28%.
format Text
id pubmed-2766069
institution National Center for Biotechnology Information
language English
publishDate 2009
publisher Hindawi Publishing Corporation
record_format MEDLINE/PubMed
spelling pubmed-27660692009-10-26 Hybrid Mammogram Classification Using Rough Set and Fuzzy Classifier Abu-Amara, Fadi Abdel-Qader, Ikhlas Int J Biomed Imaging Research Article We propose a computer aided detection (CAD) system for the detection and classification of suspicious regions in mammographic images. This system combines a dimensionality reduction module (using principal component analysis), a feature extraction module (using independent component analysis), and a feature subset selection module (using rough set model). Rough set model is used to reduce the effect of data inconsistency while a fuzzy classifier is integrated into the system to label subimages into normal or abnormal regions. The experimental results show that this system has an accuracy of 84.03% and a recall percentage of 87.28%. Hindawi Publishing Corporation 2009 2009-10-22 /pmc/articles/PMC2766069/ /pubmed/19859576 http://dx.doi.org/10.1155/2009/680508 Text en Copyright © 2009 F. Abu-Amara and I. Abdel-Qader. https://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Abu-Amara, Fadi
Abdel-Qader, Ikhlas
Hybrid Mammogram Classification Using Rough Set and Fuzzy Classifier
title Hybrid Mammogram Classification Using Rough Set and Fuzzy Classifier
title_full Hybrid Mammogram Classification Using Rough Set and Fuzzy Classifier
title_fullStr Hybrid Mammogram Classification Using Rough Set and Fuzzy Classifier
title_full_unstemmed Hybrid Mammogram Classification Using Rough Set and Fuzzy Classifier
title_short Hybrid Mammogram Classification Using Rough Set and Fuzzy Classifier
title_sort hybrid mammogram classification using rough set and fuzzy classifier
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2766069/
https://www.ncbi.nlm.nih.gov/pubmed/19859576
http://dx.doi.org/10.1155/2009/680508
work_keys_str_mv AT abuamarafadi hybridmammogramclassificationusingroughsetandfuzzyclassifier
AT abdelqaderikhlas hybridmammogramclassificationusingroughsetandfuzzyclassifier