Cargando…

Performance of Feature Selection Methods

High-throughput biological technologies offer the promise of finding feature sets to serve as biomarkers for medical applications; however, the sheer number of potential features (genes, proteins, etc.) means that there needs to be massive feature selection, far greater than that envisioned in the c...

Descripción completa

Detalles Bibliográficos
Autores principales: Dougherty, Edward R, Hua, Jianping, Sima, Chao
Formato: Texto
Lenguaje:English
Publicado: Bentham Science Publishers Ltd. 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2766788/
https://www.ncbi.nlm.nih.gov/pubmed/20190952
http://dx.doi.org/10.2174/138920209789177629
Descripción
Sumario:High-throughput biological technologies offer the promise of finding feature sets to serve as biomarkers for medical applications; however, the sheer number of potential features (genes, proteins, etc.) means that there needs to be massive feature selection, far greater than that envisioned in the classical literature. This paper considers performance analysis for feature-selection algorithms from two fundamental perspectives: How does the classification accuracy achieved with a selected feature set compare to the accuracy when the best feature set is used and what is the optimal number of features that should be used? The criteria manifest themselves in several issues that need to be considered when examining the efficacy of a feature-selection algorithm: (1) the correlation between the classifier errors for the selected feature set and the theoretically best feature set; (2) the regressions of the aforementioned errors upon one another; (3) the peaking phenomenon, that is, the effect of sample size on feature selection; and (4) the analysis of feature selection in the framework of high-dimensional models corresponding to high-throughput data.