Cargando…
Boolean Models of Genomic Regulatory Networks: Reduction Mappings, Inference, and External Control
Computational modeling of genomic regulation has become an important focus of systems biology and genomic signal processing for the past several years. It holds the promise to uncover both the structure and dynamical properties of the complex gene, protein or metabolic networks responsible for the c...
Autor principal: | |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Bentham Science Publishers Ltd.
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2766789/ https://www.ncbi.nlm.nih.gov/pubmed/20190953 http://dx.doi.org/10.2174/138920209789177584 |
_version_ | 1782173244524068864 |
---|---|
author | Ivanov, Ivan |
author_facet | Ivanov, Ivan |
author_sort | Ivanov, Ivan |
collection | PubMed |
description | Computational modeling of genomic regulation has become an important focus of systems biology and genomic signal processing for the past several years. It holds the promise to uncover both the structure and dynamical properties of the complex gene, protein or metabolic networks responsible for the cell functioning in various contexts and regimes. This, in turn, will lead to the development of optimal intervention strategies for prevention and control of disease. At the same time, constructing such computational models faces several challenges. High complexity is one of the major impediments for the practical applications of the models. Thus, reducing the size/complexity of a model becomes a critical issue in problems such as model selection, construction of tractable subnetwork models, and control of its dynamical behavior. We focus on the reduction problem in the context of two specific models of genomic regulation: Boolean networks with perturbation (BN(P)) and probabilistic Boolean networks (PBN). We also compare and draw a parallel between the reduction problem and two other important problems of computational modeling of genomic networks: the problem of network inference and the problem of designing external control policies for intervention/altering the dynamics of the model. |
format | Text |
id | pubmed-2766789 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2009 |
publisher | Bentham Science Publishers Ltd. |
record_format | MEDLINE/PubMed |
spelling | pubmed-27667892010-03-01 Boolean Models of Genomic Regulatory Networks: Reduction Mappings, Inference, and External Control Ivanov, Ivan Curr Genomics Article Computational modeling of genomic regulation has become an important focus of systems biology and genomic signal processing for the past several years. It holds the promise to uncover both the structure and dynamical properties of the complex gene, protein or metabolic networks responsible for the cell functioning in various contexts and regimes. This, in turn, will lead to the development of optimal intervention strategies for prevention and control of disease. At the same time, constructing such computational models faces several challenges. High complexity is one of the major impediments for the practical applications of the models. Thus, reducing the size/complexity of a model becomes a critical issue in problems such as model selection, construction of tractable subnetwork models, and control of its dynamical behavior. We focus on the reduction problem in the context of two specific models of genomic regulation: Boolean networks with perturbation (BN(P)) and probabilistic Boolean networks (PBN). We also compare and draw a parallel between the reduction problem and two other important problems of computational modeling of genomic networks: the problem of network inference and the problem of designing external control policies for intervention/altering the dynamics of the model. Bentham Science Publishers Ltd. 2009-09 /pmc/articles/PMC2766789/ /pubmed/20190953 http://dx.doi.org/10.2174/138920209789177584 Text en ©2009 Bentham Science Publishers Ltd. https://creativecommons.org/licenses/by/2.5/This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.5/), which permits unrestrictive use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Article Ivanov, Ivan Boolean Models of Genomic Regulatory Networks: Reduction Mappings, Inference, and External Control |
title | Boolean Models of Genomic Regulatory Networks: Reduction Mappings, Inference, and External Control |
title_full | Boolean Models of Genomic Regulatory Networks: Reduction Mappings, Inference, and External Control |
title_fullStr | Boolean Models of Genomic Regulatory Networks: Reduction Mappings, Inference, and External Control |
title_full_unstemmed | Boolean Models of Genomic Regulatory Networks: Reduction Mappings, Inference, and External Control |
title_short | Boolean Models of Genomic Regulatory Networks: Reduction Mappings, Inference, and External Control |
title_sort | boolean models of genomic regulatory networks: reduction mappings, inference, and external control |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2766789/ https://www.ncbi.nlm.nih.gov/pubmed/20190953 http://dx.doi.org/10.2174/138920209789177584 |
work_keys_str_mv | AT ivanovivan booleanmodelsofgenomicregulatorynetworksreductionmappingsinferenceandexternalcontrol |