Cargando…
Variational Bayesian identification and prediction of stochastic nonlinear dynamic causal models
In this paper, we describe a general variational Bayesian approach for approximate inference on nonlinear stochastic dynamic models. This scheme extends established approximate inference on hidden-states to cover: (i) nonlinear evolution and observation functions, (ii) unknown parameters and (precis...
Autores principales: | Daunizeau, J., Friston, K.J., Kiebel, S.J. |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
North-Holland
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2767160/ https://www.ncbi.nlm.nih.gov/pubmed/19862351 http://dx.doi.org/10.1016/j.physd.2009.08.002 |
Ejemplares similares
-
Dynamic causal modelling of distributed electromagnetic responses
por: Daunizeau, Jean, et al.
Publicado: (2009) -
Stochastic dynamic causal modelling of fMRI data: Should we care about neural noise?
por: Daunizeau, J., et al.
Publicado: (2012) -
A neural mass model of spectral responses in electrophysiology
por: Moran, R.J., et al.
Publicado: (2007) -
Ten simple rules for dynamic causal modeling
por: Stephan, K.E., et al.
Publicado: (2010) -
Perception and Hierarchical Dynamics
por: Kiebel, Stefan J., et al.
Publicado: (2009)