Cargando…
Low oxygen levels as a trigger for enhancement of respiratory metabolism in Saccharomyces cerevisiae
BACKGROUND: The industrially important yeast Saccharomyces cerevisiae is able to grow both in the presence and absence of oxygen. However, the regulation of its metabolism in conditions of intermediate oxygen availability is not well characterised. We assessed the effect of oxygen provision on the t...
Autores principales: | , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2767370/ https://www.ncbi.nlm.nih.gov/pubmed/19804647 http://dx.doi.org/10.1186/1471-2164-10-461 |
_version_ | 1782173309359620096 |
---|---|
author | Rintala, Eija Toivari, Mervi Pitkänen, Juha-Pekka Wiebe, Marilyn G Ruohonen, Laura Penttilä, Merja |
author_facet | Rintala, Eija Toivari, Mervi Pitkänen, Juha-Pekka Wiebe, Marilyn G Ruohonen, Laura Penttilä, Merja |
author_sort | Rintala, Eija |
collection | PubMed |
description | BACKGROUND: The industrially important yeast Saccharomyces cerevisiae is able to grow both in the presence and absence of oxygen. However, the regulation of its metabolism in conditions of intermediate oxygen availability is not well characterised. We assessed the effect of oxygen provision on the transcriptome and proteome of S. cerevisiae in glucose-limited chemostat cultivations in anaerobic and aerobic conditions, and with three intermediate (0.5, 1.0 and 2.8% oxygen) levels of oxygen in the feed gas. RESULTS: The main differences in the transcriptome were observed in the comparison of fully aerobic, intermediate oxygen and anaerobic conditions, while the transcriptome was generally unchanged in conditions receiving different intermediate levels (0.5, 1.0 or 2.8% O(2)) of oxygen in the feed gas. Comparison of the transcriptome and proteome data suggested post-transcriptional regulation was important, especially in 0.5% oxygen. In the conditions of intermediate oxygen, the genes encoding enzymes of the respiratory pathway were more highly expressed than in either aerobic or anaerobic conditions. A similar trend was also seen in the proteome and in enzyme activities of the TCA cycle. Further, genes encoding proteins of the mitochondrial translation machinery were present at higher levels in all oxygen-limited and anaerobic conditions, compared to fully aerobic conditions. CONCLUSION: Global upregulation of genes encoding components of the respiratory pathway under conditions of intermediate oxygen suggested a regulatory mechanism to control these genes as a response to the need of more efficient energy production. Further, cells grown in three different intermediate oxygen levels were highly similar at the level of transcription, while they differed at the proteome level, suggesting post-transcriptional mechanisms leading to distinct physiological modes of respiro-fermentative metabolism. |
format | Text |
id | pubmed-2767370 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2009 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-27673702009-10-27 Low oxygen levels as a trigger for enhancement of respiratory metabolism in Saccharomyces cerevisiae Rintala, Eija Toivari, Mervi Pitkänen, Juha-Pekka Wiebe, Marilyn G Ruohonen, Laura Penttilä, Merja BMC Genomics Research Article BACKGROUND: The industrially important yeast Saccharomyces cerevisiae is able to grow both in the presence and absence of oxygen. However, the regulation of its metabolism in conditions of intermediate oxygen availability is not well characterised. We assessed the effect of oxygen provision on the transcriptome and proteome of S. cerevisiae in glucose-limited chemostat cultivations in anaerobic and aerobic conditions, and with three intermediate (0.5, 1.0 and 2.8% oxygen) levels of oxygen in the feed gas. RESULTS: The main differences in the transcriptome were observed in the comparison of fully aerobic, intermediate oxygen and anaerobic conditions, while the transcriptome was generally unchanged in conditions receiving different intermediate levels (0.5, 1.0 or 2.8% O(2)) of oxygen in the feed gas. Comparison of the transcriptome and proteome data suggested post-transcriptional regulation was important, especially in 0.5% oxygen. In the conditions of intermediate oxygen, the genes encoding enzymes of the respiratory pathway were more highly expressed than in either aerobic or anaerobic conditions. A similar trend was also seen in the proteome and in enzyme activities of the TCA cycle. Further, genes encoding proteins of the mitochondrial translation machinery were present at higher levels in all oxygen-limited and anaerobic conditions, compared to fully aerobic conditions. CONCLUSION: Global upregulation of genes encoding components of the respiratory pathway under conditions of intermediate oxygen suggested a regulatory mechanism to control these genes as a response to the need of more efficient energy production. Further, cells grown in three different intermediate oxygen levels were highly similar at the level of transcription, while they differed at the proteome level, suggesting post-transcriptional mechanisms leading to distinct physiological modes of respiro-fermentative metabolism. BioMed Central 2009-10-05 /pmc/articles/PMC2767370/ /pubmed/19804647 http://dx.doi.org/10.1186/1471-2164-10-461 Text en Copyright © 2009 Rintala et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Rintala, Eija Toivari, Mervi Pitkänen, Juha-Pekka Wiebe, Marilyn G Ruohonen, Laura Penttilä, Merja Low oxygen levels as a trigger for enhancement of respiratory metabolism in Saccharomyces cerevisiae |
title | Low oxygen levels as a trigger for enhancement of respiratory metabolism in Saccharomyces cerevisiae |
title_full | Low oxygen levels as a trigger for enhancement of respiratory metabolism in Saccharomyces cerevisiae |
title_fullStr | Low oxygen levels as a trigger for enhancement of respiratory metabolism in Saccharomyces cerevisiae |
title_full_unstemmed | Low oxygen levels as a trigger for enhancement of respiratory metabolism in Saccharomyces cerevisiae |
title_short | Low oxygen levels as a trigger for enhancement of respiratory metabolism in Saccharomyces cerevisiae |
title_sort | low oxygen levels as a trigger for enhancement of respiratory metabolism in saccharomyces cerevisiae |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2767370/ https://www.ncbi.nlm.nih.gov/pubmed/19804647 http://dx.doi.org/10.1186/1471-2164-10-461 |
work_keys_str_mv | AT rintalaeija lowoxygenlevelsasatriggerforenhancementofrespiratorymetabolisminsaccharomycescerevisiae AT toivarimervi lowoxygenlevelsasatriggerforenhancementofrespiratorymetabolisminsaccharomycescerevisiae AT pitkanenjuhapekka lowoxygenlevelsasatriggerforenhancementofrespiratorymetabolisminsaccharomycescerevisiae AT wiebemarilyng lowoxygenlevelsasatriggerforenhancementofrespiratorymetabolisminsaccharomycescerevisiae AT ruohonenlaura lowoxygenlevelsasatriggerforenhancementofrespiratorymetabolisminsaccharomycescerevisiae AT penttilamerja lowoxygenlevelsasatriggerforenhancementofrespiratorymetabolisminsaccharomycescerevisiae |