Cargando…

Vascular Endothelial Growth Factor Inhibition by dRK6 Causes Endothelial Apoptosis, Fibrosis, and Inflammation in the Heart via the Akt/eNOS Axis in db/db Mice

OBJECTIVE: Vascular endothelial growth factor (VEGF), which is associated with the stimulation of angiogenesis and collateral vessel synthase, is one of the crucial factors involved in cardiac remodeling in type 2 diabetes. RESEARCH DESIGN AND METHODS: We investigated VEGF inhibition by dRK6 on the...

Descripción completa

Detalles Bibliográficos
Autores principales: Whee Park, Cheol, Wook Kim, Hyung, Hee Lim, Ji, Dong Yoo, Ki, Chung, Sungjin, Joon Shin, Seok, Wha Chung, Hyun, Ju Lee, Sang, Chae, Chi-Bom, Kim, Yong-Soo, Sik Chang, Yoon
Formato: Texto
Lenguaje:English
Publicado: American Diabetes Association 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2768173/
https://www.ncbi.nlm.nih.gov/pubmed/19675133
http://dx.doi.org/10.2337/db09-0136
Descripción
Sumario:OBJECTIVE: Vascular endothelial growth factor (VEGF), which is associated with the stimulation of angiogenesis and collateral vessel synthase, is one of the crucial factors involved in cardiac remodeling in type 2 diabetes. RESEARCH DESIGN AND METHODS: We investigated VEGF inhibition by dRK6 on the heart in an animal model of type 2 diabetes. Male db/db and db/m mice either were treated with dRK6 starting at 7 weeks of age for 12 weeks (db/db-dRK6 and db/m-dRK6) or were untreated. RESULTS: Cardiac dysfunction and hypertrophy were noted by echocardiogram and molecular markers in the db/db-dRK6 mice. The presence of diabetes significantly suppressed the expression of VEGF receptor (VEGFR)-1 and VEGFR-2, phospho-Akt, and phospho-endothelial nitric oxide synthase (eNOS) in the heart. In db/db-dRK6 mice, dRK6 completely inhibited VEGFR-2, phospho-Akt, and phospho-eNOS expression, whereas no effect on VEGFR-1 was observed. Cardiac fibrosis, microvascular scarcity associated with an increase in apoptotic endothelial cells, and inflammation were prominent, as well as increase in antiangiogenic growth factors. Cardiac 8-hydroxy-deoxyguanine and hypoxia-inducible factor-1α expression were significantly increased. No such changes were found in the other groups, including the db/m-dRK6 mice. The number of apoptotic human umbilical vein endothelial cells was increased by dRK6 in a dose-dependent manner only at high glucose concentrations, and this was associated with a decrease in phospho-Akt and phospho-eNOS related to oxidative stress. CONCLUSIONS: Our results demonstrated that systemic blockade of VEGF by dRK6 had deleterious effects on the heart in an animal model of type 2 diabetes; dRK6 induced downregulation of the VEGFR-2 and Akt-eNOS axis and enhancement of oxidative stress.