Cargando…
Use of Multiple Metabolic and Genetic Markers to Improve the Prediction of Type 2 Diabetes: the EPIC-Potsdam Study
OBJECTIVE: We investigated whether metabolic biomarkers and single nucleotide polymorphisms (SNPs) improve diabetes prediction beyond age, anthropometry, and lifestyle risk factors. RESEARCH DESIGN AND METHODS: A case-cohort study within a prospective study was designed. We randomly selected a subco...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
American Diabetes Association
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2768223/ https://www.ncbi.nlm.nih.gov/pubmed/19720844 http://dx.doi.org/10.2337/dc09-0197 |
Sumario: | OBJECTIVE: We investigated whether metabolic biomarkers and single nucleotide polymorphisms (SNPs) improve diabetes prediction beyond age, anthropometry, and lifestyle risk factors. RESEARCH DESIGN AND METHODS: A case-cohort study within a prospective study was designed. We randomly selected a subcohort (n = 2,500) from 26,444 participants, of whom 1,962 were diabetes free at baseline. Of the 801 incident type 2 diabetes cases identified in the cohort during 7 years of follow-up, 579 remained for analyses after exclusions. Prediction models were compared by receiver operatoring characteristic (ROC) curve and integrated discrimination improvement. RESULTS: Case-control discrimination by the lifestyle characteristics (ROC-AUC: 0.8465) improved with plasma glucose (ROC-AUC: 0.8672, P < 0.001) and A1C (ROC-AUC: 0.8859, P < 0.001). ROC-AUC further improved with HDL cholesterol, triglycerides, γ-glutamyltransferase, and alanine aminotransferase (0.9000, P = 0.002). Twenty SNPs did not improve discrimination beyond these characteristics (P = 0.69). CONCLUSIONS: Metabolic markers, but not genotyping for 20 diabetogenic SNPs, improve discrimination of incident type 2 diabetes beyond lifestyle risk factors. |
---|