Cargando…

Huntington's disease: the case for genetic modifiers

For almost three decades, Huntington's disease has been a prototype for the application of genetic strategies to human disease. HD, the Huntington's disease gene, was the first autosomal defect mapped using only DNA markers, a finding in 1983 that helped to spur similar studies in many oth...

Descripción completa

Detalles Bibliográficos
Autores principales: Gusella, James F, MacDonald, Marcy E
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2768966/
https://www.ncbi.nlm.nih.gov/pubmed/19725930
http://dx.doi.org/10.1186/gm80
_version_ 1782173531198455808
author Gusella, James F
MacDonald, Marcy E
author_facet Gusella, James F
MacDonald, Marcy E
author_sort Gusella, James F
collection PubMed
description For almost three decades, Huntington's disease has been a prototype for the application of genetic strategies to human disease. HD, the Huntington's disease gene, was the first autosomal defect mapped using only DNA markers, a finding in 1983 that helped to spur similar studies in many other disorders and contributed to the concept of the human genome project. The search for the genetic defect itself pioneered many mapping and gene-finding technologies, and culminated in the identification of the HD gene, its mutation and its novel protein product in 1993. Since that time, extensive investigations into the pathogenic mechanism have utilized the knowledge of the disease gene and its defect but, with notable exceptions, have rarely relied for guidance on the genetic findings in human patients to interpret the relevance of findings in non-human model systems. However, the human patient still has much to teach us through a detailed analysis of genotype and phenotype. Such studies have implicated the existence of genetic modifiers - genes whose natural polymorphic variation contributes to altering the development of Huntington's disease symptoms. The search for these modifiers, much as the search for the HD gene did in the past, offers to open new entrées into the process of Huntington's disease pathogenesis by unlocking the biochemical changes that occur many years before diagnosis, and thereby providing validated target proteins and pathways for development of rational therapeutic interventions.
format Text
id pubmed-2768966
institution National Center for Biotechnology Information
language English
publishDate 2009
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-27689662010-08-21 Huntington's disease: the case for genetic modifiers Gusella, James F MacDonald, Marcy E Genome Med Review For almost three decades, Huntington's disease has been a prototype for the application of genetic strategies to human disease. HD, the Huntington's disease gene, was the first autosomal defect mapped using only DNA markers, a finding in 1983 that helped to spur similar studies in many other disorders and contributed to the concept of the human genome project. The search for the genetic defect itself pioneered many mapping and gene-finding technologies, and culminated in the identification of the HD gene, its mutation and its novel protein product in 1993. Since that time, extensive investigations into the pathogenic mechanism have utilized the knowledge of the disease gene and its defect but, with notable exceptions, have rarely relied for guidance on the genetic findings in human patients to interpret the relevance of findings in non-human model systems. However, the human patient still has much to teach us through a detailed analysis of genotype and phenotype. Such studies have implicated the existence of genetic modifiers - genes whose natural polymorphic variation contributes to altering the development of Huntington's disease symptoms. The search for these modifiers, much as the search for the HD gene did in the past, offers to open new entrées into the process of Huntington's disease pathogenesis by unlocking the biochemical changes that occur many years before diagnosis, and thereby providing validated target proteins and pathways for development of rational therapeutic interventions. BioMed Central 2009-08-21 /pmc/articles/PMC2768966/ /pubmed/19725930 http://dx.doi.org/10.1186/gm80 Text en Copyright ©2009 BioMed Central Ltd
spellingShingle Review
Gusella, James F
MacDonald, Marcy E
Huntington's disease: the case for genetic modifiers
title Huntington's disease: the case for genetic modifiers
title_full Huntington's disease: the case for genetic modifiers
title_fullStr Huntington's disease: the case for genetic modifiers
title_full_unstemmed Huntington's disease: the case for genetic modifiers
title_short Huntington's disease: the case for genetic modifiers
title_sort huntington's disease: the case for genetic modifiers
topic Review
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2768966/
https://www.ncbi.nlm.nih.gov/pubmed/19725930
http://dx.doi.org/10.1186/gm80
work_keys_str_mv AT gusellajamesf huntingtonsdiseasethecaseforgeneticmodifiers
AT macdonaldmarcye huntingtonsdiseasethecaseforgeneticmodifiers