Cargando…
Isolation and preservation of schistosome eggs and larvae in RNAlater(® )facilitates genetic profiling of individuals
Although field-sampling procedures to capture gDNA from individual schistosome larval stages directly from their natural hosts exist, they do pose some technical and logistical challenges hampering certain epidemiological studies. The aim of this study was to develop, refine and evaluate an alternat...
Autor principal: | |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2770516/ https://www.ncbi.nlm.nih.gov/pubmed/19852777 http://dx.doi.org/10.1186/1756-3305-2-50 |
Sumario: | Although field-sampling procedures to capture gDNA from individual schistosome larval stages directly from their natural hosts exist, they do pose some technical and logistical challenges hampering certain epidemiological studies. The aim of this study was to develop, refine and evaluate an alternative methodology, which enables better preservation of large numbers of individual schistosome larval stages and eggs collected in low resource endemic areas, to provide PCR-quality DNA for multi-locus genetic analysis. The techniques reported here present simple and effective short-term field and long-term laboratory preservation and storage systems for individually sampled schistosome eggs and larval stages using a commercially available aqueous stabilisation reagent, RNAlater(® )eliminating the need for more cumbersome resources such as refrigerators, heaters and centrifuge equipment for immediate specimen processing. Adaptations to a general gDNA extraction method are described, that enables the acquisition of a gDNA extract (~50 μl), facilitating multiple molecular analyses of each sampled schistosome. The methodology provided PCR-quality mitochondrial and nuclear DNA from laboratory cercariae, miracidia and eggs that had been stored at up to 37°C for 2 weeks and at 4°C for 6 months and also from field collected samples. This present protocol provides significant epidemiological, ethical and practical advantages over existing sampling methods and has the potential to be transferred to studies on other organisms, especially where specimens are unable to be seen by the naked eye, are difficult to handle and need to be obtained from a field environment. |
---|