Cargando…

Growth inhibition of thyroid follicular cell-derived cancers by the opioid growth factor (OGF) - opioid growth factor receptor (OGFr) axis

BACKGROUND: Carcinoma of the thyroid gland is an uncommon cancer, but the most frequent malignancy of the endocrine system. Most thyroid cancers are derived from the follicular cell. Follicular carcinoma (FTC) is considered more malignant than papillary thyroid carcinoma (PTC), and anaplastic thyroi...

Descripción completa

Detalles Bibliográficos
Autores principales: McLaughlin, Patricia J, Zagon, Ian S, Park, Sunny S, Conway, Andrea, Donahue, Renee N, Goldenberg, David
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2770570/
https://www.ncbi.nlm.nih.gov/pubmed/19835629
http://dx.doi.org/10.1186/1471-2407-9-369
_version_ 1782173686149677056
author McLaughlin, Patricia J
Zagon, Ian S
Park, Sunny S
Conway, Andrea
Donahue, Renee N
Goldenberg, David
author_facet McLaughlin, Patricia J
Zagon, Ian S
Park, Sunny S
Conway, Andrea
Donahue, Renee N
Goldenberg, David
author_sort McLaughlin, Patricia J
collection PubMed
description BACKGROUND: Carcinoma of the thyroid gland is an uncommon cancer, but the most frequent malignancy of the endocrine system. Most thyroid cancers are derived from the follicular cell. Follicular carcinoma (FTC) is considered more malignant than papillary thyroid carcinoma (PTC), and anaplastic thyroid cancer (ATC) is one of the most lethal human cancers. Opioid Growth Factor (OGF; chemical term - [Met(5)]-enkephalin) and its receptor, OGFr, form an inhibitory axis regulating cell proliferation. Both the peptide and receptor have been detected in a wide variety of cancers, and OGF is currently used clinically as a biotherapy for some non-thyroid neoplasias. This study addressed the question of whether the OGF-OGFr axis is present and functional in human thyroid follicular cell - derived cancer. METHODS: Utilizing human ATC (KAT-18), PTC (KTC-1), and FTC (WRO 82-1) cell lines, immunohistochemistry was employed to ascertain the presence and location of OGF and OGFr. The growth characteristics in the presence of OGF or the opioid antagonist naltrexone (NTX), and the specificity of opioid peptides for proliferation of ATC, were established in KAT-18 cells. Dependence on peptide and receptor were investigated using neutralization studies with antibodies and siRNA experiments, respectively. The mechanism of peptide action on DNA synthesis and cell survival was ascertained. The ubiquity of the OGF-OGFr axis in thyroid follicular cell-derived cancer was assessed in KTC-1 (PTC) and WRO 82-1 (FTC) tumor cells. RESULTS: OGF and OGFr were present in KAT-18 cells. Concentrations of 10(-6 )M OGF inhibited cell replication up to 30%, whereas NTX increased cell growth up to 35% relative to cultures treated with sterile water. OGF treatment reduced cell number by as much as 38% in KAT-18 ATC in a dose-dependent and receptor-mediated manner. OGF antibodies neutralized the inhibitory effects of OGF, and siRNA knockdown of OGFr negated growth inhibition by OGF. Cell survival was not altered by OGF, but DNA synthesis as recorded by BrdU incorporation was depressed by 28% in OGF-treated cultures compared to those exposed to sterile water. The OGF-OGFr axis was detected and functional in PTC (KTC-1) and FTC (WRO 82-1) cell lines. CONCLUSION: These data suggest that OGF and OGFr are present in follicular-derived thyroid cancers, and that OGF serves in a tonically active inhibitory manner to maintain homeostasis of cell proliferation. These results may provide a biotherapeutic strategy in the treatment of these cancers.
format Text
id pubmed-2770570
institution National Center for Biotechnology Information
language English
publishDate 2009
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-27705702009-10-30 Growth inhibition of thyroid follicular cell-derived cancers by the opioid growth factor (OGF) - opioid growth factor receptor (OGFr) axis McLaughlin, Patricia J Zagon, Ian S Park, Sunny S Conway, Andrea Donahue, Renee N Goldenberg, David BMC Cancer Research Article BACKGROUND: Carcinoma of the thyroid gland is an uncommon cancer, but the most frequent malignancy of the endocrine system. Most thyroid cancers are derived from the follicular cell. Follicular carcinoma (FTC) is considered more malignant than papillary thyroid carcinoma (PTC), and anaplastic thyroid cancer (ATC) is one of the most lethal human cancers. Opioid Growth Factor (OGF; chemical term - [Met(5)]-enkephalin) and its receptor, OGFr, form an inhibitory axis regulating cell proliferation. Both the peptide and receptor have been detected in a wide variety of cancers, and OGF is currently used clinically as a biotherapy for some non-thyroid neoplasias. This study addressed the question of whether the OGF-OGFr axis is present and functional in human thyroid follicular cell - derived cancer. METHODS: Utilizing human ATC (KAT-18), PTC (KTC-1), and FTC (WRO 82-1) cell lines, immunohistochemistry was employed to ascertain the presence and location of OGF and OGFr. The growth characteristics in the presence of OGF or the opioid antagonist naltrexone (NTX), and the specificity of opioid peptides for proliferation of ATC, were established in KAT-18 cells. Dependence on peptide and receptor were investigated using neutralization studies with antibodies and siRNA experiments, respectively. The mechanism of peptide action on DNA synthesis and cell survival was ascertained. The ubiquity of the OGF-OGFr axis in thyroid follicular cell-derived cancer was assessed in KTC-1 (PTC) and WRO 82-1 (FTC) tumor cells. RESULTS: OGF and OGFr were present in KAT-18 cells. Concentrations of 10(-6 )M OGF inhibited cell replication up to 30%, whereas NTX increased cell growth up to 35% relative to cultures treated with sterile water. OGF treatment reduced cell number by as much as 38% in KAT-18 ATC in a dose-dependent and receptor-mediated manner. OGF antibodies neutralized the inhibitory effects of OGF, and siRNA knockdown of OGFr negated growth inhibition by OGF. Cell survival was not altered by OGF, but DNA synthesis as recorded by BrdU incorporation was depressed by 28% in OGF-treated cultures compared to those exposed to sterile water. The OGF-OGFr axis was detected and functional in PTC (KTC-1) and FTC (WRO 82-1) cell lines. CONCLUSION: These data suggest that OGF and OGFr are present in follicular-derived thyroid cancers, and that OGF serves in a tonically active inhibitory manner to maintain homeostasis of cell proliferation. These results may provide a biotherapeutic strategy in the treatment of these cancers. BioMed Central 2009-10-18 /pmc/articles/PMC2770570/ /pubmed/19835629 http://dx.doi.org/10.1186/1471-2407-9-369 Text en Copyright ©2009 McLaughlin et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
McLaughlin, Patricia J
Zagon, Ian S
Park, Sunny S
Conway, Andrea
Donahue, Renee N
Goldenberg, David
Growth inhibition of thyroid follicular cell-derived cancers by the opioid growth factor (OGF) - opioid growth factor receptor (OGFr) axis
title Growth inhibition of thyroid follicular cell-derived cancers by the opioid growth factor (OGF) - opioid growth factor receptor (OGFr) axis
title_full Growth inhibition of thyroid follicular cell-derived cancers by the opioid growth factor (OGF) - opioid growth factor receptor (OGFr) axis
title_fullStr Growth inhibition of thyroid follicular cell-derived cancers by the opioid growth factor (OGF) - opioid growth factor receptor (OGFr) axis
title_full_unstemmed Growth inhibition of thyroid follicular cell-derived cancers by the opioid growth factor (OGF) - opioid growth factor receptor (OGFr) axis
title_short Growth inhibition of thyroid follicular cell-derived cancers by the opioid growth factor (OGF) - opioid growth factor receptor (OGFr) axis
title_sort growth inhibition of thyroid follicular cell-derived cancers by the opioid growth factor (ogf) - opioid growth factor receptor (ogfr) axis
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2770570/
https://www.ncbi.nlm.nih.gov/pubmed/19835629
http://dx.doi.org/10.1186/1471-2407-9-369
work_keys_str_mv AT mclaughlinpatriciaj growthinhibitionofthyroidfollicularcellderivedcancersbytheopioidgrowthfactorogfopioidgrowthfactorreceptorogfraxis
AT zagonians growthinhibitionofthyroidfollicularcellderivedcancersbytheopioidgrowthfactorogfopioidgrowthfactorreceptorogfraxis
AT parksunnys growthinhibitionofthyroidfollicularcellderivedcancersbytheopioidgrowthfactorogfopioidgrowthfactorreceptorogfraxis
AT conwayandrea growthinhibitionofthyroidfollicularcellderivedcancersbytheopioidgrowthfactorogfopioidgrowthfactorreceptorogfraxis
AT donahuereneen growthinhibitionofthyroidfollicularcellderivedcancersbytheopioidgrowthfactorogfopioidgrowthfactorreceptorogfraxis
AT goldenbergdavid growthinhibitionofthyroidfollicularcellderivedcancersbytheopioidgrowthfactorogfopioidgrowthfactorreceptorogfraxis