Cargando…

Kinetics of deamination and Cu(II)/H(2)O(2)/Ascorbate-induced formation of 5-methylcytosine glycol at CpG sites in duplex DNA

Mutation in p53 tumor suppressor gene is a hallmark of human cancers. Six major mutational hotspots in p53 contain methylated CpG (mCpG) sites, and C →T transition is the most common mutation at these sites. It was hypothesized that the formation of 5-methylcytosine glycol induced by reactive oxygen...

Descripción completa

Detalles Bibliográficos
Autores principales: Cao, Huachuan, Jiang, Yong, Wang, Yinsheng
Formato: Texto
Lenguaje:English
Publicado: Oxford University Press 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2770644/
https://www.ncbi.nlm.nih.gov/pubmed/19706732
http://dx.doi.org/10.1093/nar/gkp615
Descripción
Sumario:Mutation in p53 tumor suppressor gene is a hallmark of human cancers. Six major mutational hotspots in p53 contain methylated CpG (mCpG) sites, and C →T transition is the most common mutation at these sites. It was hypothesized that the formation of 5-methylcytosine glycol induced by reactive oxygen species, its spontaneous deamination to thymine glycol and the miscoding property of the latter may account, in part, for the ubiquitous C →T mutation at CpG site. Here, we assessed the kinetics of deamination for two diastereomers of 5-methylcytosine glycol in duplex DNA. Our results revealed that the half-lives for the deamination of the (5S,6S) and (5R,6R) diastereomers of 5-methylcytosine glycol in duplex DNA at 37°C were 37.4 ± 1.6 and 27.4 ± 1.0 h, respectively. The deamination rates were only slightly lower than those for the two diastereomers in mononucleosides. Next, we assessed the formation of 5-methyl-2′-deoxycytidine glycol in the form of its deaminated product, namely, thymidine glycol (Tg), in methyl-CpG-bearing duplex DNA treated with Cu(II)/H(2)O(2)/ascorbate. LC-MS/MS quantification results showed that the yield of Tg is similar as that of 5-(hydroxymethyl)-2′-deoxycytidine. Together, our data support that the formation and deamination of 5-methylcytosine glycol may contribute significantly to the C →T transition mutation at mCpG dinucleotide site.