Cargando…
Integration of the β-Catenin-Dependent Wnt Pathway with Integrin Signaling through the Adaptor Molecule Grb2
BACKGROUND: The complexity of wnt signaling likely stems from two sources: multiple pathways emanating from frizzled receptors in response to wnt binding, and modulation of those pathways and target gene responsiveness by context-dependent signals downstream of growth factor and matrix receptors. Bo...
Autores principales: | , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2773007/ https://www.ncbi.nlm.nih.gov/pubmed/19924227 http://dx.doi.org/10.1371/journal.pone.0007841 |
Sumario: | BACKGROUND: The complexity of wnt signaling likely stems from two sources: multiple pathways emanating from frizzled receptors in response to wnt binding, and modulation of those pathways and target gene responsiveness by context-dependent signals downstream of growth factor and matrix receptors. Both rac1 and c-jun have recently been implicated in wnt signaling, however their upstream activators have not been identified. METHODOLOGY/PRINCIPAL FINDINGS: Here we identify the adapter protein Grb2, which is itself an integrator of multiple signaling pathways, as a modifier of β-catenin-dependent wnt signaling. Grb2 synergizes with wnt3A, constitutively active (CA) LRP6, Dvl2 or CA-β-catenin to drive a LEF/TCF-responsive reporter, and dominant negative (DN) Grb2 or siRNA to Grb2 block wnt3A-mediated reporter activity. MMP9 is a target of β-catenin-dependent wnt signaling, and an MMP9 promoter reporter is also responsive to signals downstream of Grb2. Both a jnk inhibitor and DN-c-jun block transcriptional activation downstream of Dvl2 and Grb2, as does DN-rac1. Integrin ligation by collagen also synergizes with wnt signaling as does overexpression of Focal Adhesion Kinase (FAK), and this is blocked by DN-Grb2. CONCLUSIONS/SIGNIFICANCE: These data suggest that integrin ligation and FAK activation synergize with wnt signaling through a Grb2-rac-jnk-c-jun pathway, providing a context-dependent mechanism for modulation of wnt signaling. |
---|