Cargando…
A simple cost-effective high performance liquid chromatographic assay of sulphadoxine in whole blood spotted on filter paper for field studies
BACKGROUND: Artesunate plus sulphadoxine-pyrimethamine is one of the four artemisinin-based combination therapies currently recommended by WHO as first-line treatment for falciparum malaria. Sulphadoxine-pyrimethamine is also used for intermittent preventive treatment for malaria in pregnancy. Drug...
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2773786/ https://www.ncbi.nlm.nih.gov/pubmed/19852850 http://dx.doi.org/10.1186/1475-2875-8-238 |
Sumario: | BACKGROUND: Artesunate plus sulphadoxine-pyrimethamine is one of the four artemisinin-based combination therapies currently recommended by WHO as first-line treatment for falciparum malaria. Sulphadoxine-pyrimethamine is also used for intermittent preventive treatment for malaria in pregnancy. Drug use patterns and drug pharmacokinetics are important factors impacting the spread of drug resistant parasites hence it is imperative to monitor the effect of pharmacokinetic variability on therapeutic efficacy. Unfortunately, information on the pharmacokinetics of sulphadoxine in children and pregnant women with malaria is very limited. Methods for the assay of sulphadoxine-pyrimethamine have been previously reported, but they are not cost-effective and practicable in analytical laboratories in low resource areas where malaria is endemic. Efforts in this study were thus devoted to development and evaluation of a simple, cost-effective and sensitive method for quantification of sulphadoxine in small capillary samples of whole blood dried on filter paper. METHODS: Sulphadoxine was determined in whole blood by reversed-phase high performance liquid chromatography with UV detection at 340 nm. Sulisoxazole (SLX) was used as internal standard. Chromatographic separation was achieved using a Beckman Coulter ODS C(18 )and a mobile phase consisting of 0.05 M phosphate buffer-methanol-acetonitrile (70:17:13 V/V/V) containing 1% triethylamine solution. RESULTS: Standard curves from sulphadoxine-spiked blood added to filter paper were linear over the concentration range studied. Linear regression analysis yielded correlation coefficient r(2 )> 0.99 (n = 6). Extraction recoveries were about 82-85%. The limit of quantification was 120 ng/ml while the within and between assay coefficient of variations were < 10%. The inter-day precision was < 5.8% and inter-day accuracy ranged from 4.1 to 5.3%. There was no interference from endogenous compounds or any of the commonly used anti-malarial, analgesic and anti-infective drugs with the peaks of SDX or the internal standard. CONCLUSION: The recovery and accuracy of determination of SDX from whole blood filter paper samples using the method described in this study is satisfactory, thus making the method a valuable tool in epidemiological studies and therapeutic drug monitoring in developing endemic countries. Furthermore, the applicability of the method in studying the pharmacokinetic disposition of SDX in a patient suggests that the method is suitable in malaria endemic areas. |
---|