Cargando…
AdaBoost-based multiple SVM-RFE for classification of mammograms in DDSM
BACKGROUND: Digital mammography is one of the most promising options to diagnose breast cancer which is the most common cancer in women. However, its effectiveness is enfeebled due to the difficulty in distinguishing actual cancer lesions from benign abnormalities, which results in unnecessary biops...
Autores principales: | Yoon, Sejong, Kim, Saejoon |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2773916/ https://www.ncbi.nlm.nih.gov/pubmed/19891795 http://dx.doi.org/10.1186/1472-6947-9-S1-S1 |
Ejemplares similares
-
Ada-WHIPS: explaining AdaBoost classification with applications in the health sciences
por: Hatwell, Julian, et al.
Publicado: (2020) -
Axis-Guided Vessel Segmentation Using a Self-Constructing Cascade-AdaBoost-SVM Classifier
por: Hu, Xin, et al.
Publicado: (2018) -
AdaBoost based Random forest model for Emotion classification of Facial images
por: Gubbala, Kumari, et al.
Publicado: (2023) -
Brillouin Frequency Shift Extraction Based on AdaBoost Algorithm
por: Zheng, Huan, et al.
Publicado: (2022) -
An Intelligent Heartbeat Classification System Based on Attributable Features with AdaBoost+Random Forest Algorithm
por: Li, Runchuan, et al.
Publicado: (2021)