Cargando…
An efficient drug delivery vehicle for botulism countermeasure
BACKGROUND: Botulinum neurotoxin (BoNT) is the most potent poison known to mankind. Currently no antidote is available to rescue poisoned synapses. An effective medical countermeasure strategy would require developing a drug that could rescue poisoned neuromuscular synapses and include its efficient...
Autores principales: | , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2774289/ https://www.ncbi.nlm.nih.gov/pubmed/19860869 http://dx.doi.org/10.1186/1471-2210-9-12 |
_version_ | 1782173921510948864 |
---|---|
author | Zhang, Peng Ray, Radharaman Singh, Bal Ram Li, Dan Adler, Michael Ray, Prabhati |
author_facet | Zhang, Peng Ray, Radharaman Singh, Bal Ram Li, Dan Adler, Michael Ray, Prabhati |
author_sort | Zhang, Peng |
collection | PubMed |
description | BACKGROUND: Botulinum neurotoxin (BoNT) is the most potent poison known to mankind. Currently no antidote is available to rescue poisoned synapses. An effective medical countermeasure strategy would require developing a drug that could rescue poisoned neuromuscular synapses and include its efficient delivery specifically to poisoned presynaptic nerve terminals. Here we report a drug delivery strategy that could directly deliver toxin inhibitors into the intoxicated nerve terminal cytosol. RESULTS: A targeted delivery vehicle was developed for intracellular transport of emerging botulinum neurotoxin antagonists. The drug delivery vehicle consisted of the non-toxic recombinant heavy chain of botulinum neurotoxin-A coupled to a 10-kDa amino dextran via the heterobifunctional linker 3-(2-pyridylthio)-propionyl hydrazide. The heavy chain served to target botulinum neurotoxin-sensitive cells and promote internalization of the complex, while the dextran served as a platform to deliver model therapeutic molecules to the targeted neurons. Our results indicated that the drug delivery vehicle entry into neurons was via BoNT-A receptor mediated endocytosis. Once internalized into neurons, the drug carrier component separated from the drug delivery vehicle in a fashion similar to the separation of the BoNT-A light chain from the holotoxin. This drug delivery vehicle could be used to deliver BoNT-A antidotes into BoNT-A intoxicated cultured mouse spinal cord cells. CONCLUSION: An effective BoNT-based drug delivery vehicle can be used to directly deliver toxin inhibitors into intoxicated nerve terminal cytosol. This approach can potentially be utilized for targeted drug delivery to treat other neuronal and neuromuscular disorders. This report also provides new knowledge of endocytosis and exocytosis as well as of BoNT trafficking. |
format | Text |
id | pubmed-2774289 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2009 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-27742892009-11-07 An efficient drug delivery vehicle for botulism countermeasure Zhang, Peng Ray, Radharaman Singh, Bal Ram Li, Dan Adler, Michael Ray, Prabhati BMC Pharmacol Research Article BACKGROUND: Botulinum neurotoxin (BoNT) is the most potent poison known to mankind. Currently no antidote is available to rescue poisoned synapses. An effective medical countermeasure strategy would require developing a drug that could rescue poisoned neuromuscular synapses and include its efficient delivery specifically to poisoned presynaptic nerve terminals. Here we report a drug delivery strategy that could directly deliver toxin inhibitors into the intoxicated nerve terminal cytosol. RESULTS: A targeted delivery vehicle was developed for intracellular transport of emerging botulinum neurotoxin antagonists. The drug delivery vehicle consisted of the non-toxic recombinant heavy chain of botulinum neurotoxin-A coupled to a 10-kDa amino dextran via the heterobifunctional linker 3-(2-pyridylthio)-propionyl hydrazide. The heavy chain served to target botulinum neurotoxin-sensitive cells and promote internalization of the complex, while the dextran served as a platform to deliver model therapeutic molecules to the targeted neurons. Our results indicated that the drug delivery vehicle entry into neurons was via BoNT-A receptor mediated endocytosis. Once internalized into neurons, the drug carrier component separated from the drug delivery vehicle in a fashion similar to the separation of the BoNT-A light chain from the holotoxin. This drug delivery vehicle could be used to deliver BoNT-A antidotes into BoNT-A intoxicated cultured mouse spinal cord cells. CONCLUSION: An effective BoNT-based drug delivery vehicle can be used to directly deliver toxin inhibitors into intoxicated nerve terminal cytosol. This approach can potentially be utilized for targeted drug delivery to treat other neuronal and neuromuscular disorders. This report also provides new knowledge of endocytosis and exocytosis as well as of BoNT trafficking. BioMed Central 2009-10-27 /pmc/articles/PMC2774289/ /pubmed/19860869 http://dx.doi.org/10.1186/1471-2210-9-12 Text en Copyright © 2009 Zhang et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Zhang, Peng Ray, Radharaman Singh, Bal Ram Li, Dan Adler, Michael Ray, Prabhati An efficient drug delivery vehicle for botulism countermeasure |
title | An efficient drug delivery vehicle for botulism countermeasure |
title_full | An efficient drug delivery vehicle for botulism countermeasure |
title_fullStr | An efficient drug delivery vehicle for botulism countermeasure |
title_full_unstemmed | An efficient drug delivery vehicle for botulism countermeasure |
title_short | An efficient drug delivery vehicle for botulism countermeasure |
title_sort | efficient drug delivery vehicle for botulism countermeasure |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2774289/ https://www.ncbi.nlm.nih.gov/pubmed/19860869 http://dx.doi.org/10.1186/1471-2210-9-12 |
work_keys_str_mv | AT zhangpeng anefficientdrugdeliveryvehicleforbotulismcountermeasure AT rayradharaman anefficientdrugdeliveryvehicleforbotulismcountermeasure AT singhbalram anefficientdrugdeliveryvehicleforbotulismcountermeasure AT lidan anefficientdrugdeliveryvehicleforbotulismcountermeasure AT adlermichael anefficientdrugdeliveryvehicleforbotulismcountermeasure AT rayprabhati anefficientdrugdeliveryvehicleforbotulismcountermeasure AT zhangpeng efficientdrugdeliveryvehicleforbotulismcountermeasure AT rayradharaman efficientdrugdeliveryvehicleforbotulismcountermeasure AT singhbalram efficientdrugdeliveryvehicleforbotulismcountermeasure AT lidan efficientdrugdeliveryvehicleforbotulismcountermeasure AT adlermichael efficientdrugdeliveryvehicleforbotulismcountermeasure AT rayprabhati efficientdrugdeliveryvehicleforbotulismcountermeasure |