Cargando…

Molecular Evolution of GYPC: Evidence for Recent Structural Innovation and Positive Selection in Humans

GYPC encodes two erythrocyte surface sialoglycoproteins in humans, glycophorin C and glycophorin D (GPC and GPD), via initiation of translation at two start codons on a single transcript. The malaria-causing parasite Plasmodium falciparum uses GPC as a means of invasion into the human red blood cell...

Descripción completa

Detalles Bibliográficos
Autores principales: Wilder, Jason A., Hewett, Elizabeth K., Gansner, Meredith E.
Formato: Texto
Lenguaje:English
Publicado: Oxford University Press 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2775107/
https://www.ncbi.nlm.nih.gov/pubmed/19679754
http://dx.doi.org/10.1093/molbev/msp183
_version_ 1782173985787609088
author Wilder, Jason A.
Hewett, Elizabeth K.
Gansner, Meredith E.
author_facet Wilder, Jason A.
Hewett, Elizabeth K.
Gansner, Meredith E.
author_sort Wilder, Jason A.
collection PubMed
description GYPC encodes two erythrocyte surface sialoglycoproteins in humans, glycophorin C and glycophorin D (GPC and GPD), via initiation of translation at two start codons on a single transcript. The malaria-causing parasite Plasmodium falciparum uses GPC as a means of invasion into the human red blood cell. Here, we examine the molecular evolution of GYPC among the Hominoidea (Greater and Lesser Apes) and also the pattern of polymorphism at the locus in a global human sample. We find an excess of nonsynonymous divergence among species that appears to be caused solely by accelerated evolution of GYPC in the human lineage. Moreover, we find that the ability of GYPC to encode both GPC and GPD is a uniquely human trait, caused by the evolution of the GPC start codon in the human lineage. The pattern of polymorphism among humans is consistent with a hitchhiking event at the locus, suggesting that positive natural selection affected GYPC in the relatively recent past. Because GPC is exploited by P. falciparum for invasion of the red blood cell, we hypothesize that selection for evasion of P. falciparum has caused accelerated evolution of GYPC in humans (relative to other primates) and that this positive selection has continued to act in the recent evolution of our species. These data suggest that malaria has played a powerful role in shaping molecules on the surface of the human red blood cell. In addition, our examination of GYPC reveals a novel mechanism of protein evolution: co-option of untranslated region (UTR) sequence following the formation of a new start codon. In the case of human GYPC, the ancestral protein (GPD) continues to be produced through leaky translation. Because leaky translation is a widespread phenomenon among genes and organisms, we suggest that co-option of UTR sequence may be an important source of protein innovation.
format Text
id pubmed-2775107
institution National Center for Biotechnology Information
language English
publishDate 2009
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-27751072009-11-12 Molecular Evolution of GYPC: Evidence for Recent Structural Innovation and Positive Selection in Humans Wilder, Jason A. Hewett, Elizabeth K. Gansner, Meredith E. Mol Biol Evol Research Articles GYPC encodes two erythrocyte surface sialoglycoproteins in humans, glycophorin C and glycophorin D (GPC and GPD), via initiation of translation at two start codons on a single transcript. The malaria-causing parasite Plasmodium falciparum uses GPC as a means of invasion into the human red blood cell. Here, we examine the molecular evolution of GYPC among the Hominoidea (Greater and Lesser Apes) and also the pattern of polymorphism at the locus in a global human sample. We find an excess of nonsynonymous divergence among species that appears to be caused solely by accelerated evolution of GYPC in the human lineage. Moreover, we find that the ability of GYPC to encode both GPC and GPD is a uniquely human trait, caused by the evolution of the GPC start codon in the human lineage. The pattern of polymorphism among humans is consistent with a hitchhiking event at the locus, suggesting that positive natural selection affected GYPC in the relatively recent past. Because GPC is exploited by P. falciparum for invasion of the red blood cell, we hypothesize that selection for evasion of P. falciparum has caused accelerated evolution of GYPC in humans (relative to other primates) and that this positive selection has continued to act in the recent evolution of our species. These data suggest that malaria has played a powerful role in shaping molecules on the surface of the human red blood cell. In addition, our examination of GYPC reveals a novel mechanism of protein evolution: co-option of untranslated region (UTR) sequence following the formation of a new start codon. In the case of human GYPC, the ancestral protein (GPD) continues to be produced through leaky translation. Because leaky translation is a widespread phenomenon among genes and organisms, we suggest that co-option of UTR sequence may be an important source of protein innovation. Oxford University Press 2009-12 2009-08-13 /pmc/articles/PMC2775107/ /pubmed/19679754 http://dx.doi.org/10.1093/molbev/msp183 Text en © 2009 The Authors This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses?by-nc/2.0/uk/) which permits unrestricted non-commercial use distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Wilder, Jason A.
Hewett, Elizabeth K.
Gansner, Meredith E.
Molecular Evolution of GYPC: Evidence for Recent Structural Innovation and Positive Selection in Humans
title Molecular Evolution of GYPC: Evidence for Recent Structural Innovation and Positive Selection in Humans
title_full Molecular Evolution of GYPC: Evidence for Recent Structural Innovation and Positive Selection in Humans
title_fullStr Molecular Evolution of GYPC: Evidence for Recent Structural Innovation and Positive Selection in Humans
title_full_unstemmed Molecular Evolution of GYPC: Evidence for Recent Structural Innovation and Positive Selection in Humans
title_short Molecular Evolution of GYPC: Evidence for Recent Structural Innovation and Positive Selection in Humans
title_sort molecular evolution of gypc: evidence for recent structural innovation and positive selection in humans
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2775107/
https://www.ncbi.nlm.nih.gov/pubmed/19679754
http://dx.doi.org/10.1093/molbev/msp183
work_keys_str_mv AT wilderjasona molecularevolutionofgypcevidenceforrecentstructuralinnovationandpositiveselectioninhumans
AT hewettelizabethk molecularevolutionofgypcevidenceforrecentstructuralinnovationandpositiveselectioninhumans
AT gansnermeredithe molecularevolutionofgypcevidenceforrecentstructuralinnovationandpositiveselectioninhumans