Cargando…
A High-Throughput Screening Approach to Discovering Good Forms of Biologically Inspired Visual Representation
While many models of biological object recognition share a common set of “broad-stroke” properties, the performance of any one model depends strongly on the choice of parameters in a particular instantiation of that model—e.g., the number of units per layer, the size of pooling kernels, exponents in...
Autores principales: | Pinto, Nicolas, Doukhan, David, DiCarlo, James J., Cox, David D. |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2775908/ https://www.ncbi.nlm.nih.gov/pubmed/19956750 http://dx.doi.org/10.1371/journal.pcbi.1000579 |
Ejemplares similares
-
Why is Real-World Visual Object Recognition Hard?
por: Pinto, Nicolas, et al.
Publicado: (2008) -
Probabilistic and biologically inspired feature representations
por: Felsberg, Michael, et al.
Publicado: (2018) -
Deep Neural Networks Rival the Representation of Primate IT Cortex for Core Visual Object Recognition
por: Cadieu, Charles F., et al.
Publicado: (2014) -
The inspired leader: how leaders discover, experience and maintain their inspiration
por: Bird, Andy
Publicado: (2017) -
Discovering cancer vulnerabilities using high-throughput micro-RNA screening
por: Nikolic, Iva, et al.
Publicado: (2017)