Cargando…
Grammatical-Restrained Hidden Conditional Random Fields for Bioinformatics applications
BACKGROUND: Discriminative models are designed to naturally address classification tasks. However, some applications require the inclusion of grammar rules, and in these cases generative models, such as Hidden Markov Models (HMMs) and Stochastic Grammars, are routinely applied. RESULTS: We introduce...
Autores principales: | Fariselli, Piero, Savojardo, Castrense, Martelli, Pier Luigi, Casadio, Rita |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2776008/ https://www.ncbi.nlm.nih.gov/pubmed/19849839 http://dx.doi.org/10.1186/1748-7188-4-13 |
Ejemplares similares
-
Prediction of disulfide connectivity in proteins with machine-learning methods and correlated mutations
por: Savojardo, Castrense, et al.
Publicado: (2013) -
DeepSig: deep learning improves signal peptide detection in proteins
por: Savojardo, Castrense, et al.
Publicado: (2018) -
SChloro: directing Viridiplantae proteins to six chloroplastic sub-compartments
por: Savojardo, Castrense, et al.
Publicado: (2017) -
BUSCA: an integrative web server to predict subcellular localization of proteins
por: Savojardo, Castrense, et al.
Publicado: (2018) -
MemPype: a pipeline for the annotation of eukaryotic membrane proteins
por: Pierleoni, Andrea, et al.
Publicado: (2011)