Cargando…
The KM-Algorithm Identifies Regulated Genes in Time Series Expression Data
We present a statistical method to rank observed genes in gene expression time series experiments according to their degree of regulation in a biological process. The ranking may be used to focus on specific genes or to select meaningful subsets of genes from which gene regulatory networks can be bu...
Autores principales: | Bremer, Martina, Doerge, R. W. |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2777010/ https://www.ncbi.nlm.nih.gov/pubmed/19956417 http://dx.doi.org/10.1155/2009/284251 |
Ejemplares similares
-
Dynamic Clustering of Gene Expression
por: An, Lingling, et al.
Publicado: (2012) -
Experimental assessment of static and dynamic algorithms for gene regulation inference from time series expression data
por: Lopes, Miguel, et al.
Publicado: (2013) -
MICRAT: a novel algorithm for inferring gene regulatory networks using time series gene expression data
por: Yang, Bei, et al.
Publicado: (2018) -
Rollers Versus Trainers: 10–Km Time Trial
por: TSEH, WAYLAND, et al.
Publicado: (2017) -
KM
por: Marwaha, Seema
Publicado: (2021)