Cargando…
Detection and quantification of pestivirus in experimentally infected pregnant ewes and their progeny
BACKGROUND: Border disease virus (BDV) causes important reproductive losses, and eradication strategies focus on the identification and removal of persistently infected animals arising after in uterine infection. BDV infection dynamics were studied in 13 ewes experimentally infected with BDV-4 genot...
Autores principales: | , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2777161/ https://www.ncbi.nlm.nih.gov/pubmed/19891772 http://dx.doi.org/10.1186/1743-422X-6-189 |
Sumario: | BACKGROUND: Border disease virus (BDV) causes important reproductive losses, and eradication strategies focus on the identification and removal of persistently infected animals arising after in uterine infection. BDV infection dynamics were studied in 13 ewes experimentally infected with BDV-4 genotype at 3 phases of pregnancy [days 108 (group A), 76 (group B) and 55 (group C)] by quantification of viral RNA in blood collected on days -1 to parturition using quantitative real-time RT-PCR (qRT-PCR). Viral RNA loads were also measured in blood/foetal fluid and tissue samples from their offspring at lambing (3 foetuses, 7 stillborns, 15 lambs). qRT-PCR results were compared with those obtained by conventional RT-PCR and used to predict persistent infections. RESULTS: Viral RNA was detected in the ewes between days 2-15 p.i. The viraemia reached its highest peak between days 6-7 p.i. with a second peak at days 11-12 p.i. qRT-PCR was significantly faster to perform (less than 1 h) than conventional RT-PCR and detected BDV RNA in more ewes, being detection more continuous and prolonged in time. The virus was detected in peripheral blood in a higher percentage of lambs than in tissues, where differences in viral genome copies were more marked. Skin and cerebral cortex showed the highest viral RNA loads, and spleen and spinal cord the lowest. High viral RNA loads were observed in several animals in group B and all in group C, infected during middle and early foetal development, respectively, but also in one lamb from group A, infected during late foetal development. Serology and viral genome copy number estimates in blood and tissues were used to establish a quantitative cut-off threshold for transient viraemia. CONCLUSION: Viral RNA quantification showed potential for the discrimination between persistent infections and transient viraemia using single-time point blood sampling and raised questions regarding foetal immune system development and the occurrence of persistent infections. |
---|