Cargando…

Morphological changes of injected calcium phosphate cement in osteoporotic compressed vertebral bodies

SUMMARY: This study was undertaken to investigate the radiologic and clinical outcomes of vertebroplasty with calcium phosphate (CaP) cement in patients with osteoporotic vertebral compression fractures. The morphological changes of injected CaP cement in osteoporotic compressed vertebral bodies wer...

Descripción completa

Detalles Bibliográficos
Autores principales: Heo, D. H., Cho, Y. J., Sheen, S. H., Kuh, S. U., Cho, S. M., Oh, S. M.
Formato: Texto
Lenguaje:English
Publicado: Springer-Verlag 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2777211/
https://www.ncbi.nlm.nih.gov/pubmed/19300891
http://dx.doi.org/10.1007/s00198-009-0911-4
Descripción
Sumario:SUMMARY: This study was undertaken to investigate the radiologic and clinical outcomes of vertebroplasty with calcium phosphate (CaP) cement in patients with osteoporotic vertebral compression fractures. The morphological changes of injected CaP cement in osteoporotic compressed vertebral bodies were variable and unpredictable. We suggest that the practice of vertebroplasty using CaP should be reconsidered. INTRODUCTION: Recently, CaP, an osteoconductive filler material, has been used in the treatment of osteoporotic compression fractures. However, the clinical results of CaP-cement-augmented vertebrae are still not well established. The purpose of this study is to assess the clinical results of vertebroplasty with CaP by evaluating the morphological changes of CaP cement in compressed vertebral bodies. METHODS: Fourteen patients have been followed for more than 2 years after vertebroplasty. The following parameters were reviewed: age, sex, T score, compliance with osteoporosis medications, visual analog scale score, compression ratio, subsequent compression fractures, and any morphological changes in the filler material. RESULTS: The morphological changes of injected CaP included reabsorption, condensation, bone formation (osteogenesis), fracture of the CaP solid hump, and heterotopic ossification. Out of 14 patients, 11 (78.6%) developed progression of the compression of the CaP-augmented vertebral bodies after vertebroplasty. CONCLUSIONS: The morphological changes of the injected CaP cement in the vertebral bodies were variable and unpredictable. The compression of the CaP-augmented vertebrae progressed continuously for 2 years or more. The findings of this study suggest that vertebroplasty using CaP cement should be reconsidered.