Cargando…

MeCP2/H3meK9 are involved in IL-6 gene silencing in pancreatic adenocarcinoma cell lines

The aim of the present study was to analyse the molecular mechanisms involved in the Interleukin-6 (IL-6) silencing in pancreatic adenocarcinoma cell lines. Our results demonstrate that TNF-α, a major IL-6 inducer, is able to induce IL-6 only in three out of six cell lines examined. 5-aza-2′-deoxycy...

Descripción completa

Detalles Bibliográficos
Autores principales: Dandrea, Mario, Donadelli, Massimo, Costanzo, Chiara, Scarpa, Aldo, Palmieri, Marta
Formato: Texto
Lenguaje:English
Publicado: Oxford University Press 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2777443/
https://www.ncbi.nlm.nih.gov/pubmed/19745053
http://dx.doi.org/10.1093/nar/gkp723
Descripción
Sumario:The aim of the present study was to analyse the molecular mechanisms involved in the Interleukin-6 (IL-6) silencing in pancreatic adenocarcinoma cell lines. Our results demonstrate that TNF-α, a major IL-6 inducer, is able to induce IL-6 only in three out of six cell lines examined. 5-aza-2′-deoxycytidine (DAC), but not trichostatin A (TSA), activates the expression of IL-6 in all cell lines, indicating that DNA methylation, but not histone deacetylation, plays an essential role in IL-6 silencing. Indeed, the IL-6 upstream region shows a methylation status that correlates with IL-6 expression and binds MeCP2 and H3meK9 only in the non-expressing cell lines. Our results suggest that critical methylations located from positions –666 to –426 relative to the transcription start site of IL-6 may act as binding sites for MeCP2.