Cargando…

A cost-utility analysis of cervical cancer vaccination in preadolescent Canadian females

BACKGROUND: Despite the fact that approximately 70% of Canadian women undergo cervical cancer screening at least once every 3 years, approximately 1,300 women were diagnosed with cervical cancer and approximately 380 died from it in 2008. This study estimates the effectiveness and cost-effectiveness...

Descripción completa

Detalles Bibliográficos
Autores principales: Anonychuk, Andrea M, Bauch, Chris T, Merid, Maraki Fikre, Van Kriekinge, Georges, Demarteau, Nadia
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2777872/
https://www.ncbi.nlm.nih.gov/pubmed/19878578
http://dx.doi.org/10.1186/1471-2458-9-401
Descripción
Sumario:BACKGROUND: Despite the fact that approximately 70% of Canadian women undergo cervical cancer screening at least once every 3 years, approximately 1,300 women were diagnosed with cervical cancer and approximately 380 died from it in 2008. This study estimates the effectiveness and cost-effectiveness of vaccinating 12-year old Canadian females with an AS04-adjuvanted cervical cancer vaccine. The indirect effect of vaccination, via herd immunity, is also estimated. METHODS: A 12-health-state 1-year-cycle Markov model was developed to estimate lifetime HPV related events for a cohort of 12-year old females. Annual transition probabilities between health-states were derived from published literature and Canadian population statistics. The model was calibrated using Canadian cancer statistics. From a healthcare perspective, the cost-effectiveness of introducing a vaccine with efficacy against HPV-16/18 and evidence of cross-protection against other oncogenic HPV types was evaluated in a population undergoing current screening practices. The base-case analysis included 70% screening coverage, 75% vaccination coverage, $135/dose for vaccine, and 3% discount rate on future costs and health effects. Conservative herd immunity effects were taken into account by estimated HPV incidence using a mathematical model parameterized by reported age-stratified sexual mixing data. Sensitivity analyses were performed to address parameter uncertainties. RESULTS: Vaccinating 12-year old females (n = 100,000) was estimated to prevent between 390-633 undiscounted cervical cancer cases (reduction of 47%-77%) and 168-275 undiscounted deaths (48%-78%) over their lifetime, depending on whether or not herd immunity and cross-protection against other oncogenic HPV types were included. Vaccination was estimated to cost $18,672-$31,687 per QALY-gained, the lower range representing inclusion of cross-protective efficacy and herd immunity. The cost per QALY-gained was most sensitive to duration of vaccine protection, discount rate, and the correlation between probability of screening and probability of vaccination. CONCLUSION: In the context of current screening patterns, vaccination of 12-year old Canadian females with an ASO4-ajuvanted cervical cancer vaccine is estimated to significantly reduce cervical cancer and mortality, and is a cost-effective option. However, the economic attractiveness of vaccination is impacted by the vaccine's duration of protection and the discount rate used in the analysis.