Cargando…
CCR2 and CXCR4 regulate peripheral blood monocyte pharmacodynamics and link to efficacy in experimental autoimmune encephalomyelitis
BACKGROUND: CCR2 plays a key role in regulating monocyte trafficking to sites of inflammation and therefore has been the focus of much interest as a target for inflammatory disease. METHODS: Here we examined the effects of CCR2 blockade with a potent small molecule antagonist to determine the pharma...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2777898/ https://www.ncbi.nlm.nih.gov/pubmed/19906300 http://dx.doi.org/10.1186/1476-9255-6-32 |
_version_ | 1782174210540437504 |
---|---|
author | Wang, Yuanfan Cui, Long Gonsiorek, Waldemar Min, Soo-Hong Anilkumar, Gopinadhan Rosenblum, Stuart Kozlowski, Joseph Lundell, Daniel Fine, Jay S Grant, Ethan P |
author_facet | Wang, Yuanfan Cui, Long Gonsiorek, Waldemar Min, Soo-Hong Anilkumar, Gopinadhan Rosenblum, Stuart Kozlowski, Joseph Lundell, Daniel Fine, Jay S Grant, Ethan P |
author_sort | Wang, Yuanfan |
collection | PubMed |
description | BACKGROUND: CCR2 plays a key role in regulating monocyte trafficking to sites of inflammation and therefore has been the focus of much interest as a target for inflammatory disease. METHODS: Here we examined the effects of CCR2 blockade with a potent small molecule antagonist to determine the pharmacodynamic consequences on the peripheral blood monocyte compartment in the context of acute and chronic inflammatory processes. RESULTS: We demonstrate that CCR2 antagonism in vivo led to a rapid decrease in the number of circulating Ly6C(hi )monocytes and that this decrease was largely due to the CXCR4-dependent sequestration of these cells in the bone marrow, providing pharmacological evidence for a mechanism by which monocyte dynamics are regulated in vivo. CCR2 antagonism led to an accumulation of circulating CCL2 and CCL7 levels in the blood, indicating a role for CCR2 in regulating the levels of its ligands under homeostatic conditions. Finally, we show that the pharmacodynamic changes due to CCR2 antagonism were apparent after chronic dosing in mouse experimental autoimmune encephalomyelitis, a model in which CCR2 blockade demonstrated a dramatic reduction in disease severity, manifest in a reduced accumulation of monocytes and other cells in the CNS. CONCLUSION: CCR2 antagonism in vivo has tractable pharmacodynamic effects that can be used to align target engagement with biologic effects on disease activity. |
format | Text |
id | pubmed-2777898 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2009 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-27778982009-11-17 CCR2 and CXCR4 regulate peripheral blood monocyte pharmacodynamics and link to efficacy in experimental autoimmune encephalomyelitis Wang, Yuanfan Cui, Long Gonsiorek, Waldemar Min, Soo-Hong Anilkumar, Gopinadhan Rosenblum, Stuart Kozlowski, Joseph Lundell, Daniel Fine, Jay S Grant, Ethan P J Inflamm (Lond) Research BACKGROUND: CCR2 plays a key role in regulating monocyte trafficking to sites of inflammation and therefore has been the focus of much interest as a target for inflammatory disease. METHODS: Here we examined the effects of CCR2 blockade with a potent small molecule antagonist to determine the pharmacodynamic consequences on the peripheral blood monocyte compartment in the context of acute and chronic inflammatory processes. RESULTS: We demonstrate that CCR2 antagonism in vivo led to a rapid decrease in the number of circulating Ly6C(hi )monocytes and that this decrease was largely due to the CXCR4-dependent sequestration of these cells in the bone marrow, providing pharmacological evidence for a mechanism by which monocyte dynamics are regulated in vivo. CCR2 antagonism led to an accumulation of circulating CCL2 and CCL7 levels in the blood, indicating a role for CCR2 in regulating the levels of its ligands under homeostatic conditions. Finally, we show that the pharmacodynamic changes due to CCR2 antagonism were apparent after chronic dosing in mouse experimental autoimmune encephalomyelitis, a model in which CCR2 blockade demonstrated a dramatic reduction in disease severity, manifest in a reduced accumulation of monocytes and other cells in the CNS. CONCLUSION: CCR2 antagonism in vivo has tractable pharmacodynamic effects that can be used to align target engagement with biologic effects on disease activity. BioMed Central 2009-11-11 /pmc/articles/PMC2777898/ /pubmed/19906300 http://dx.doi.org/10.1186/1476-9255-6-32 Text en Copyright © 2009 Wang et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Wang, Yuanfan Cui, Long Gonsiorek, Waldemar Min, Soo-Hong Anilkumar, Gopinadhan Rosenblum, Stuart Kozlowski, Joseph Lundell, Daniel Fine, Jay S Grant, Ethan P CCR2 and CXCR4 regulate peripheral blood monocyte pharmacodynamics and link to efficacy in experimental autoimmune encephalomyelitis |
title | CCR2 and CXCR4 regulate peripheral blood monocyte pharmacodynamics and link to efficacy in experimental autoimmune encephalomyelitis |
title_full | CCR2 and CXCR4 regulate peripheral blood monocyte pharmacodynamics and link to efficacy in experimental autoimmune encephalomyelitis |
title_fullStr | CCR2 and CXCR4 regulate peripheral blood monocyte pharmacodynamics and link to efficacy in experimental autoimmune encephalomyelitis |
title_full_unstemmed | CCR2 and CXCR4 regulate peripheral blood monocyte pharmacodynamics and link to efficacy in experimental autoimmune encephalomyelitis |
title_short | CCR2 and CXCR4 regulate peripheral blood monocyte pharmacodynamics and link to efficacy in experimental autoimmune encephalomyelitis |
title_sort | ccr2 and cxcr4 regulate peripheral blood monocyte pharmacodynamics and link to efficacy in experimental autoimmune encephalomyelitis |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2777898/ https://www.ncbi.nlm.nih.gov/pubmed/19906300 http://dx.doi.org/10.1186/1476-9255-6-32 |
work_keys_str_mv | AT wangyuanfan ccr2andcxcr4regulateperipheralbloodmonocytepharmacodynamicsandlinktoefficacyinexperimentalautoimmuneencephalomyelitis AT cuilong ccr2andcxcr4regulateperipheralbloodmonocytepharmacodynamicsandlinktoefficacyinexperimentalautoimmuneencephalomyelitis AT gonsiorekwaldemar ccr2andcxcr4regulateperipheralbloodmonocytepharmacodynamicsandlinktoefficacyinexperimentalautoimmuneencephalomyelitis AT minsoohong ccr2andcxcr4regulateperipheralbloodmonocytepharmacodynamicsandlinktoefficacyinexperimentalautoimmuneencephalomyelitis AT anilkumargopinadhan ccr2andcxcr4regulateperipheralbloodmonocytepharmacodynamicsandlinktoefficacyinexperimentalautoimmuneencephalomyelitis AT rosenblumstuart ccr2andcxcr4regulateperipheralbloodmonocytepharmacodynamicsandlinktoefficacyinexperimentalautoimmuneencephalomyelitis AT kozlowskijoseph ccr2andcxcr4regulateperipheralbloodmonocytepharmacodynamicsandlinktoefficacyinexperimentalautoimmuneencephalomyelitis AT lundelldaniel ccr2andcxcr4regulateperipheralbloodmonocytepharmacodynamicsandlinktoefficacyinexperimentalautoimmuneencephalomyelitis AT finejays ccr2andcxcr4regulateperipheralbloodmonocytepharmacodynamicsandlinktoefficacyinexperimentalautoimmuneencephalomyelitis AT grantethanp ccr2andcxcr4regulateperipheralbloodmonocytepharmacodynamicsandlinktoefficacyinexperimentalautoimmuneencephalomyelitis |