Cargando…
Partially-supervised protein subclass discovery with simultaneous annotation of functional residues
BACKGROUND: The study of functional subfamilies of protein domain families and the identification of the residues which determine substrate specificity is an important question in the analysis of protein domains. One way to address this question is the use of clustering methods for protein sequence...
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2777906/ https://www.ncbi.nlm.nih.gov/pubmed/19857261 http://dx.doi.org/10.1186/1472-6807-9-68 |
_version_ | 1782174212477157376 |
---|---|
author | Georgi, Benjamin Schultz, Jörg Schliep, Alexander |
author_facet | Georgi, Benjamin Schultz, Jörg Schliep, Alexander |
author_sort | Georgi, Benjamin |
collection | PubMed |
description | BACKGROUND: The study of functional subfamilies of protein domain families and the identification of the residues which determine substrate specificity is an important question in the analysis of protein domains. One way to address this question is the use of clustering methods for protein sequence data and approaches to predict functional residues based on such clusterings. The locations of putative functional residues in known protein structures provide insights into how different substrate specificities are reflected on the protein structure level. RESULTS: We have developed an extension of the context-specific independence mixture model clustering framework which allows for the integration of experimental data. As these are usually known only for a few proteins, our algorithm implements a partially-supervised learning approach. We discover domain subfamilies and predict functional residues for four protein domain families: phosphatases, pyridoxal dependent decarboxylases, WW and SH3 domains to demonstrate the usefulness of our approach. CONCLUSION: The partially-supervised clustering revealed biologically meaningful subfamilies even for highly heterogeneous domains and the predicted functional residues provide insights into the basis of the different substrate specificities. |
format | Text |
id | pubmed-2777906 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2009 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-27779062009-11-17 Partially-supervised protein subclass discovery with simultaneous annotation of functional residues Georgi, Benjamin Schultz, Jörg Schliep, Alexander BMC Struct Biol Research Article BACKGROUND: The study of functional subfamilies of protein domain families and the identification of the residues which determine substrate specificity is an important question in the analysis of protein domains. One way to address this question is the use of clustering methods for protein sequence data and approaches to predict functional residues based on such clusterings. The locations of putative functional residues in known protein structures provide insights into how different substrate specificities are reflected on the protein structure level. RESULTS: We have developed an extension of the context-specific independence mixture model clustering framework which allows for the integration of experimental data. As these are usually known only for a few proteins, our algorithm implements a partially-supervised learning approach. We discover domain subfamilies and predict functional residues for four protein domain families: phosphatases, pyridoxal dependent decarboxylases, WW and SH3 domains to demonstrate the usefulness of our approach. CONCLUSION: The partially-supervised clustering revealed biologically meaningful subfamilies even for highly heterogeneous domains and the predicted functional residues provide insights into the basis of the different substrate specificities. BioMed Central 2009-10-26 /pmc/articles/PMC2777906/ /pubmed/19857261 http://dx.doi.org/10.1186/1472-6807-9-68 Text en Copyright © 2009 Georgi et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Georgi, Benjamin Schultz, Jörg Schliep, Alexander Partially-supervised protein subclass discovery with simultaneous annotation of functional residues |
title | Partially-supervised protein subclass discovery with simultaneous annotation of functional residues |
title_full | Partially-supervised protein subclass discovery with simultaneous annotation of functional residues |
title_fullStr | Partially-supervised protein subclass discovery with simultaneous annotation of functional residues |
title_full_unstemmed | Partially-supervised protein subclass discovery with simultaneous annotation of functional residues |
title_short | Partially-supervised protein subclass discovery with simultaneous annotation of functional residues |
title_sort | partially-supervised protein subclass discovery with simultaneous annotation of functional residues |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2777906/ https://www.ncbi.nlm.nih.gov/pubmed/19857261 http://dx.doi.org/10.1186/1472-6807-9-68 |
work_keys_str_mv | AT georgibenjamin partiallysupervisedproteinsubclassdiscoverywithsimultaneousannotationoffunctionalresidues AT schultzjorg partiallysupervisedproteinsubclassdiscoverywithsimultaneousannotationoffunctionalresidues AT schliepalexander partiallysupervisedproteinsubclassdiscoverywithsimultaneousannotationoffunctionalresidues |