Cargando…
Effective Reduced Diffusion-Models: A Data Driven Approach to the Analysis of Neuronal Dynamics
We introduce in this paper a new method for reducing neurodynamical data to an effective diffusion equation, either experimentally or using simulations of biophysically detailed models. The dimensionality of the data is first reduced to the first principal component, and then fitted by the stationar...
Autores principales: | Deco, Gustavo, Martí, Daniel, Ledberg, Anders, Reig, Ramon, Sanchez Vives, Maria V. |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2778141/ https://www.ncbi.nlm.nih.gov/pubmed/19997490 http://dx.doi.org/10.1371/journal.pcbi.1000587 |
Ejemplares similares
-
Neurobiological Models of Two-Choice Decision Making Can Be Reduced to a One-Dimensional Nonlinear Diffusion Equation
por: Roxin, Alex, et al.
Publicado: (2008) -
Inferring and quantifying causality in neuronal networks
por: Chicharro, Daniel, et al.
Publicado: (2011) -
When Two Become One: The Limits of Causality Analysis of Brain Dynamics
por: Chicharro, Daniel, et al.
Publicado: (2012) -
Data-driven discovery of canonical large-scale brain dynamics
por: Piccinini, Juan, et al.
Publicado: (2022) -
Visual-reward driven changes of movement during action execution
por: Marti-Marca, Angela, et al.
Publicado: (2020)