Cargando…
Inhibition of constitutive and cxc-chemokine-induced NF-κB activity potentiates ansamycin-based HSP90-inhibitor cytotoxicity in castrate-resistant prostate cancer cells
BACKGROUND: We determined how CXC-chemokine signalling and necrosis factor-κB (NF-κB) activity affected heat-shock protein 90 (Hsp90) inhibitor (geldanamycin (GA) and 17-allylamino-demethoxygeldanamycin (17-AAG)) cytotoxicity in castrate-resistant prostate cancer (CRPC). METHODS: Geldanamycin and 17...
Autores principales: | , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2778515/ https://www.ncbi.nlm.nih.gov/pubmed/19809428 http://dx.doi.org/10.1038/sj.bjc.6605356 |
Sumario: | BACKGROUND: We determined how CXC-chemokine signalling and necrosis factor-κB (NF-κB) activity affected heat-shock protein 90 (Hsp90) inhibitor (geldanamycin (GA) and 17-allylamino-demethoxygeldanamycin (17-AAG)) cytotoxicity in castrate-resistant prostate cancer (CRPC). METHODS: Geldanamycin and 17-AAG toxicity, together with the CXCR2 antagonist AZ10397767 or NF-κB inhibitor BAY11-7082, was assessed by 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay in two CRPC lines, DU145 and PC3. Flow cytometry quantified apoptotic or necrosis profiles. Necrosis factor-κB activity was determined by luciferase readouts or indirectly by quantitative PCR and ELISA-based determination of CXCL8 expression. RESULTS: Geldanamycin and 17-AAG reduced PC3 and DU145 cell viability, although PC3 cells were less sensitive. Addition of AZ10397767 increased GA (e.g., PC3 IC(20): from 1.67±0.4 to 0.18±0.2 nM) and 17-AAG (PC3 IC(20): 43.7±7.8 to 0.64±1.8 nM) potency in PC3 but not DU145 cells. Similarly, BAY11-7082 increased the potency of 17-AAG in PC3 but not in DU145 cells, correlating with the elevated constitutive NF-κB activity in PC3 cells. AZ10397767 increased 17-AAG-induced apoptosis and necrosis and decreased NF-κB activity/CXCL8 expression in 17-AAG-treated PC3 cells. CONCLUSION: Ansamycin cytotoxicity is enhanced by inhibiting NF-κB activity and/or CXC-chemokine signalling in CRPC cells. Detecting and/or inhibiting NF-κB activity may aid the selection and treatment response of CRPC patients to Hsp90 inhibitors. |
---|