Cargando…
Spike-Based Reinforcement Learning in Continuous State and Action Space: When Policy Gradient Methods Fail
Changes of synaptic connections between neurons are thought to be the physiological basis of learning. These changes can be gated by neuromodulators that encode the presence of reward. We study a family of reward-modulated synaptic learning rules for spiking neurons on a learning task in continuous...
Autores principales: | Vasilaki, Eleni, Frémaux, Nicolas, Urbanczik, Robert, Senn, Walter, Gerstner, Wulfram |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2778872/ https://www.ncbi.nlm.nih.gov/pubmed/19997492 http://dx.doi.org/10.1371/journal.pcbi.1000586 |
Ejemplares similares
-
Correction: Spike-Based Reinforcement Learning in Continuous State and Action Space: When Policy Gradient Methods Fail
por: Vasilaki, Eleni, et al.
Publicado: (2009) -
Reinforcement Learning Using a Continuous Time Actor-Critic Framework with Spiking Neurons
por: Frémaux, Nicolas, et al.
Publicado: (2013) -
Policy gradient rules for populations of spiking neurons
por: Friedrich, Johannes, et al.
Publicado: (2011) -
Neuromodulated Spike-Timing-Dependent Plasticity, and Theory of Three-Factor Learning Rules
por: Frémaux, Nicolas, et al.
Publicado: (2016) -
Gradient estimation in dendritic reinforcement learning
por: Schiess, Mathieu, et al.
Publicado: (2012)