Cargando…

Cooperation between a Coenzyme A-Independent Stand-Alone Initiation Module and an Iterative Type I Polyketide Synthase during Synthesis of Mycobacterial Phenolic Glycolipids

[Image: see text] Several Mycobacterium tuberculosis strains, Mycobacterium leprae, and other mycobacterial pathogens produce a group of small-molecule virulence factors called phenolic glycolipids (PGLs). PGLs play key roles in pathogenicity and host−pathogen interaction. Thus, elucidation of the P...

Descripción completa

Detalles Bibliográficos
Autores principales: He, Weiguo, Soll, Clifford E., Chavadi, Sivagami Sundaram, Zhang, Guangtao, Warren, J. David, Quadri, Luis E. N.
Formato: Texto
Lenguaje:English
Publicado: American Chemical Society 2009
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2779066/
https://www.ncbi.nlm.nih.gov/pubmed/19799378
http://dx.doi.org/10.1021/ja904792q
_version_ 1782174333466050560
author He, Weiguo
Soll, Clifford E.
Chavadi, Sivagami Sundaram
Zhang, Guangtao
Warren, J. David
Quadri, Luis E. N.
author_facet He, Weiguo
Soll, Clifford E.
Chavadi, Sivagami Sundaram
Zhang, Guangtao
Warren, J. David
Quadri, Luis E. N.
author_sort He, Weiguo
collection PubMed
description [Image: see text] Several Mycobacterium tuberculosis strains, Mycobacterium leprae, and other mycobacterial pathogens produce a group of small-molecule virulence factors called phenolic glycolipids (PGLs). PGLs play key roles in pathogenicity and host−pathogen interaction. Thus, elucidation of the PGL biosynthetic pathway will not only expand our understanding of natural product biosynthesis, but may also illuminate routes to novel therapeutics to afford alternative lines of defense against mycobacterial infections. In this study, we report an investigation of the enzymatic requirements for the production of long-chain p-hydroxyphenylalkanoate intermediates of PGL biosynthesis. We demonstrate a functional cooperation between a coenzyme A-independent stand-alone didomain initiation module (FadD22) and a 6-domain reducing iterative type I polyketide synthase (Pks15/1) for production of p-hydroxyphenylalkanoate intermediates in in vitro and in vivo FadD22-Pks15/1 reconstituted systems. Our results suggest that Pks15/1 is an iterative type I polyketide synthase with a relaxed control of catalytic cycle iterations, a mechanistic property that explains the origin of a characteristic alkyl chain length variability seen in mycobacterial PGLs. The FadD22-Pks15/1 reconstituted systems lay an initial foundation for future efforts to unveil the mechanism of iterative catalysis control by which the structures of the final products of Pks15/1 are defined, and to scrutinize the functional partnerships of the FadD22-Pks15/1 system with downstream enzymes of the PGL biosynthetic pathway.
format Text
id pubmed-2779066
institution National Center for Biotechnology Information
language English
publishDate 2009
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-27790662009-11-18 Cooperation between a Coenzyme A-Independent Stand-Alone Initiation Module and an Iterative Type I Polyketide Synthase during Synthesis of Mycobacterial Phenolic Glycolipids He, Weiguo Soll, Clifford E. Chavadi, Sivagami Sundaram Zhang, Guangtao Warren, J. David Quadri, Luis E. N. J Am Chem Soc [Image: see text] Several Mycobacterium tuberculosis strains, Mycobacterium leprae, and other mycobacterial pathogens produce a group of small-molecule virulence factors called phenolic glycolipids (PGLs). PGLs play key roles in pathogenicity and host−pathogen interaction. Thus, elucidation of the PGL biosynthetic pathway will not only expand our understanding of natural product biosynthesis, but may also illuminate routes to novel therapeutics to afford alternative lines of defense against mycobacterial infections. In this study, we report an investigation of the enzymatic requirements for the production of long-chain p-hydroxyphenylalkanoate intermediates of PGL biosynthesis. We demonstrate a functional cooperation between a coenzyme A-independent stand-alone didomain initiation module (FadD22) and a 6-domain reducing iterative type I polyketide synthase (Pks15/1) for production of p-hydroxyphenylalkanoate intermediates in in vitro and in vivo FadD22-Pks15/1 reconstituted systems. Our results suggest that Pks15/1 is an iterative type I polyketide synthase with a relaxed control of catalytic cycle iterations, a mechanistic property that explains the origin of a characteristic alkyl chain length variability seen in mycobacterial PGLs. The FadD22-Pks15/1 reconstituted systems lay an initial foundation for future efforts to unveil the mechanism of iterative catalysis control by which the structures of the final products of Pks15/1 are defined, and to scrutinize the functional partnerships of the FadD22-Pks15/1 system with downstream enzymes of the PGL biosynthetic pathway. American Chemical Society 2009-10-02 2009-11-25 /pmc/articles/PMC2779066/ /pubmed/19799378 http://dx.doi.org/10.1021/ja904792q Text en Copyright © 2009 American Chemical Society http://pubs.acs.org This is an open-access article distributed under the ACS AuthorChoice Terms & Conditions. Any use of this article, must conform to the terms of that license which are available at http://pubs.acs.org.
spellingShingle He, Weiguo
Soll, Clifford E.
Chavadi, Sivagami Sundaram
Zhang, Guangtao
Warren, J. David
Quadri, Luis E. N.
Cooperation between a Coenzyme A-Independent Stand-Alone Initiation Module and an Iterative Type I Polyketide Synthase during Synthesis of Mycobacterial Phenolic Glycolipids
title Cooperation between a Coenzyme A-Independent Stand-Alone Initiation Module and an Iterative Type I Polyketide Synthase during Synthesis of Mycobacterial Phenolic Glycolipids
title_full Cooperation between a Coenzyme A-Independent Stand-Alone Initiation Module and an Iterative Type I Polyketide Synthase during Synthesis of Mycobacterial Phenolic Glycolipids
title_fullStr Cooperation between a Coenzyme A-Independent Stand-Alone Initiation Module and an Iterative Type I Polyketide Synthase during Synthesis of Mycobacterial Phenolic Glycolipids
title_full_unstemmed Cooperation between a Coenzyme A-Independent Stand-Alone Initiation Module and an Iterative Type I Polyketide Synthase during Synthesis of Mycobacterial Phenolic Glycolipids
title_short Cooperation between a Coenzyme A-Independent Stand-Alone Initiation Module and an Iterative Type I Polyketide Synthase during Synthesis of Mycobacterial Phenolic Glycolipids
title_sort cooperation between a coenzyme a-independent stand-alone initiation module and an iterative type i polyketide synthase during synthesis of mycobacterial phenolic glycolipids
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2779066/
https://www.ncbi.nlm.nih.gov/pubmed/19799378
http://dx.doi.org/10.1021/ja904792q
work_keys_str_mv AT heweiguo cooperationbetweenacoenzymeaindependentstandaloneinitiationmoduleandaniterativetypeipolyketidesynthaseduringsynthesisofmycobacterialphenolicglycolipids
AT sollclifforde cooperationbetweenacoenzymeaindependentstandaloneinitiationmoduleandaniterativetypeipolyketidesynthaseduringsynthesisofmycobacterialphenolicglycolipids
AT chavadisivagamisundaram cooperationbetweenacoenzymeaindependentstandaloneinitiationmoduleandaniterativetypeipolyketidesynthaseduringsynthesisofmycobacterialphenolicglycolipids
AT zhangguangtao cooperationbetweenacoenzymeaindependentstandaloneinitiationmoduleandaniterativetypeipolyketidesynthaseduringsynthesisofmycobacterialphenolicglycolipids
AT warrenjdavid cooperationbetweenacoenzymeaindependentstandaloneinitiationmoduleandaniterativetypeipolyketidesynthaseduringsynthesisofmycobacterialphenolicglycolipids
AT quadriluisen cooperationbetweenacoenzymeaindependentstandaloneinitiationmoduleandaniterativetypeipolyketidesynthaseduringsynthesisofmycobacterialphenolicglycolipids