Cargando…
Short and long term axotomy-induced ERG changes in albino and pigmented rats
PURPOSE: To investigate the different components of full-field flash electroretinogram (ERG) responses in adult albino and pigmented rats at various time intervals following optic nerve transection (ONT). METHODS: In adult Sprague-Dawley (SD, albino) and Piebald-Viral-Glaxo (PVG, pigmented) rats, th...
Autores principales: | , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Molecular Vision
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2779069/ https://www.ncbi.nlm.nih.gov/pubmed/19936311 |
_version_ | 1782174334183276544 |
---|---|
author | Alarcón-Martínez, Luis de la Villa, Pedro Avilés-Trigueros, Marcelino Blanco, Román Villegas-Pérez, Maria P. Vidal-Sanz, Manuel |
author_facet | Alarcón-Martínez, Luis de la Villa, Pedro Avilés-Trigueros, Marcelino Blanco, Román Villegas-Pérez, Maria P. Vidal-Sanz, Manuel |
author_sort | Alarcón-Martínez, Luis |
collection | PubMed |
description | PURPOSE: To investigate the different components of full-field flash electroretinogram (ERG) responses in adult albino and pigmented rats at various time intervals following optic nerve transection (ONT). METHODS: In adult Sprague-Dawley (SD, albino) and Piebald-Viral-Glaxo (PVG, pigmented) rats, the left optic nerve was transected intraorbitally to induce retinal ganglion cell (RGC) death. ERG responses were recorded simultaneously from both eyes beforehand and at 1, 2, 4, and 12 week intervals after ONT. The ERG a- and b-waves and the scotopic threshold responses (STR) were analyzed in scotopic conditions. White light stimuli of intensities ranging from 10(−6) to 10(−4) cd·s·m(−2) were used to record the positive and negative scotopic threshold responses (pSTR and nSTR), while stimulus light intensities ranging from 10(−4) to 10(2) cd·s·m(−2) were used to analyze the a- and b-wave amplitudes of standard ERG recordings. RESULTS: In the albino rats, one week after intraorbital ONT, the STR mean amplitude decreased significantly, to approximately 60% of the values registered for the contralateral eye (p<0.05), which had not been operated on; standard ERG a- and b-waves showed a small reduction in amplitude—to approximately 85%. By two weeks after ONT, the STR mean amplitude was approximately 40% that of the contralateral eye, while the a- and b-wave amplitudes had further decreased to approximately 75%. Four weeks after ONT, the STR had fallen to 60% of that of the contralateral eyes, whereas the a- and b-waves reached values of approximately 90%. Twelve weeks after ONT, the STR remained significantly reduced to approximately 45%, whereas the a- and b-waves reached values of approximately 90%. In the pigmented rats, one week after intraorbital ONT, the mean amplitude had decreased significantly, to approximately 60% for the pSTR and to 80% for the nSTR of the values registered for the intact contralateral eye (p<0.05); while the standard ERG a- and b-waves showed a small reduction in amplitude to approximately 90%. Two weeks after ONT, the STR mean amplitude was approximately 55%, while the a- and b-wave amplitudes had further decreased to approximately 65%. Four weeks after ONT, the STR also was significantly reduced, to only 40%, whereas the a- and b-waves reached values of approximately 60%. Twelve weeks after ONT, the pSTR and nSTR remained significantly reduced to approximately 40% and 70%, respectively; whereas the a- and b-waves reached values of approximately 80%. CONCLUSIONS: Optic nerve injury results in transient reductions of the major ERG components, the a- and b-waves, as well as permanent reductions of the early components of the ERG, the negative and positive scotopic threshold responses. Because ONT induces massive RGC loss, it is likely that permanent reduction in the STR represents a lack of the RGC population, thus highlighting the importance of the STR recordings as an electrophysiological tool for the assessment of RGC function. |
format | Text |
id | pubmed-2779069 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2009 |
publisher | Molecular Vision |
record_format | MEDLINE/PubMed |
spelling | pubmed-27790692009-11-20 Short and long term axotomy-induced ERG changes in albino and pigmented rats Alarcón-Martínez, Luis de la Villa, Pedro Avilés-Trigueros, Marcelino Blanco, Román Villegas-Pérez, Maria P. Vidal-Sanz, Manuel Mol Vis Research Article PURPOSE: To investigate the different components of full-field flash electroretinogram (ERG) responses in adult albino and pigmented rats at various time intervals following optic nerve transection (ONT). METHODS: In adult Sprague-Dawley (SD, albino) and Piebald-Viral-Glaxo (PVG, pigmented) rats, the left optic nerve was transected intraorbitally to induce retinal ganglion cell (RGC) death. ERG responses were recorded simultaneously from both eyes beforehand and at 1, 2, 4, and 12 week intervals after ONT. The ERG a- and b-waves and the scotopic threshold responses (STR) were analyzed in scotopic conditions. White light stimuli of intensities ranging from 10(−6) to 10(−4) cd·s·m(−2) were used to record the positive and negative scotopic threshold responses (pSTR and nSTR), while stimulus light intensities ranging from 10(−4) to 10(2) cd·s·m(−2) were used to analyze the a- and b-wave amplitudes of standard ERG recordings. RESULTS: In the albino rats, one week after intraorbital ONT, the STR mean amplitude decreased significantly, to approximately 60% of the values registered for the contralateral eye (p<0.05), which had not been operated on; standard ERG a- and b-waves showed a small reduction in amplitude—to approximately 85%. By two weeks after ONT, the STR mean amplitude was approximately 40% that of the contralateral eye, while the a- and b-wave amplitudes had further decreased to approximately 75%. Four weeks after ONT, the STR had fallen to 60% of that of the contralateral eyes, whereas the a- and b-waves reached values of approximately 90%. Twelve weeks after ONT, the STR remained significantly reduced to approximately 45%, whereas the a- and b-waves reached values of approximately 90%. In the pigmented rats, one week after intraorbital ONT, the mean amplitude had decreased significantly, to approximately 60% for the pSTR and to 80% for the nSTR of the values registered for the intact contralateral eye (p<0.05); while the standard ERG a- and b-waves showed a small reduction in amplitude to approximately 90%. Two weeks after ONT, the STR mean amplitude was approximately 55%, while the a- and b-wave amplitudes had further decreased to approximately 65%. Four weeks after ONT, the STR also was significantly reduced, to only 40%, whereas the a- and b-waves reached values of approximately 60%. Twelve weeks after ONT, the pSTR and nSTR remained significantly reduced to approximately 40% and 70%, respectively; whereas the a- and b-waves reached values of approximately 80%. CONCLUSIONS: Optic nerve injury results in transient reductions of the major ERG components, the a- and b-waves, as well as permanent reductions of the early components of the ERG, the negative and positive scotopic threshold responses. Because ONT induces massive RGC loss, it is likely that permanent reduction in the STR represents a lack of the RGC population, thus highlighting the importance of the STR recordings as an electrophysiological tool for the assessment of RGC function. Molecular Vision 2009-11-17 /pmc/articles/PMC2779069/ /pubmed/19936311 Text en http://creativecommons.org/licenses/by/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Alarcón-Martínez, Luis de la Villa, Pedro Avilés-Trigueros, Marcelino Blanco, Román Villegas-Pérez, Maria P. Vidal-Sanz, Manuel Short and long term axotomy-induced ERG changes in albino and pigmented rats |
title | Short and long term axotomy-induced ERG changes in albino and pigmented rats |
title_full | Short and long term axotomy-induced ERG changes in albino and pigmented rats |
title_fullStr | Short and long term axotomy-induced ERG changes in albino and pigmented rats |
title_full_unstemmed | Short and long term axotomy-induced ERG changes in albino and pigmented rats |
title_short | Short and long term axotomy-induced ERG changes in albino and pigmented rats |
title_sort | short and long term axotomy-induced erg changes in albino and pigmented rats |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2779069/ https://www.ncbi.nlm.nih.gov/pubmed/19936311 |
work_keys_str_mv | AT alarconmartinezluis shortandlongtermaxotomyinducedergchangesinalbinoandpigmentedrats AT delavillapedro shortandlongtermaxotomyinducedergchangesinalbinoandpigmentedrats AT avilestriguerosmarcelino shortandlongtermaxotomyinducedergchangesinalbinoandpigmentedrats AT blancoroman shortandlongtermaxotomyinducedergchangesinalbinoandpigmentedrats AT villegasperezmariap shortandlongtermaxotomyinducedergchangesinalbinoandpigmentedrats AT vidalsanzmanuel shortandlongtermaxotomyinducedergchangesinalbinoandpigmentedrats |