Cargando…

Developmental expression of three small GTPases in the mouse eye

PURPOSE: The small GTPases function as "molecular switches" by binding and releasing GTP to mediate downstream signaling effects. The Rho-family of GTPases is central in modulating cell differentiation and cytoskeletal changes. Since eye development requires comprehensive morphogenetic mov...

Descripción completa

Detalles Bibliográficos
Autores principales: Mitchell, Dianne C., Bryan, Brad A., Liu, Jin-Ping, Liu, Wen-Bin, Zhang, Lan, Qu, Jia, Zhou, Xiangtian, Liu, Mingyao, Li, David W.
Formato: Texto
Lenguaje:English
Publicado: Molecular Vision 2007
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2779149/
https://www.ncbi.nlm.nih.gov/pubmed/17653061
Descripción
Sumario:PURPOSE: The small GTPases function as "molecular switches" by binding and releasing GTP to mediate downstream signaling effects. The Rho-family of GTPases is central in modulating cell differentiation and cytoskeletal changes. Since eye development requires comprehensive morphogenetic movements and extensive cellular differentiation, we hypothesize that different small GTPases may play important roles during morphogenesis of eye development. To explore this possibility, we examined the expression patterns of three major Rho-GTPases: RhoA, Rac1, and Cdc42 in embryonic, postnatal (one day after birth), and adult (two-month old) mouse eye. METHODS: Various ocular tissues were collected from embryonic, postnatal, and adult C57BL/6 mice. Western blots were conducted using total proteins extracted from cornea, retina, lens epithelial cells, and lens fiber cells of the adult mice or different fractions of rat lenses. Immunohistochemistry (IHC) was performed with 6 μm thick sections cut through the eye ball region of 11.5 pc, 14.5 pc, 17.5 pc, postnatal, and adult mice. Parallel controls were run using the rabbit preimmune and GTPase-specific antibodies blocked with saturating levels of corresponding peptide antigen. RESULTS: In the embryonic mouse eye, RhoA and Cdc42 expressions were initially detectable in all three compartments at 11.5 pc. However, Rac1 became easily detectable in these compartments at 14.5 pc. Increased levels of RhoA, Rac1, and Cdc42 were detected in the three compartments at 17.5 pc and the strongest signals for RhoA, Rac1, and Cdc42 were observed in the primary lens fiber cells at 17.5 pc. In the postnatal mouse eye, the three small GTPases were significantly expressed in both endothelial and epithelial cells of mouse cornea, epithelial cells of the ocular lens, photoreceptors, horizontal/amacrine/Muller's cells, and some ganglian cells of the retina. Much lower level of expression was observed in the corneal stroma fibroblasts, lens fiber cells, and the inner and outer plexiform layers of the mouse retina. In the adult mouse eye, all three Rho-GTPases were expressed in corneal epithelial cells and retina. However, only RhoA protein was detected in corneal endothelial cells and Rac1 protein detected in the ocular lens. CONCLUSIONS: The strong expression of the three small GTPases in the cornea, lens, and retina of mouse eye at embryonic 17.5 pc and postnatal stage suggests their important functions for the morphogenesis of the different compartments of the mouse eye. Particularly, high levels of expression of RhoA, Rac1, and Cdc42 in embryonic lens fiber cells suggest their involvement in differentiation of primary lens fiber cells. In the adult mouse eye, all three Rho-GTPases seem to be involved in differentiation of corneal epithelial cells and retina, however, RhoA alone may be required for endothelial cell differentiation and Rac1 likely plays an important role in supporting continuous lens growth and maintenance of lens transparency.