Cargando…

Electroporating Fields Target Oxidatively Damaged Areas in the Cell Membrane

Reversible electropermeabilization (electroporation) is widely used to facilitate the introduction of genetic material and pharmaceutical agents into living cells. Although considerable knowledge has been gained from the study of real and simulated model membranes in electric fields, efforts to opti...

Descripción completa

Detalles Bibliográficos
Autores principales: Vernier, P. Thomas, Levine, Zachary A., Wu, Yu-Hsuan, Joubert, Vanessa, Ziegler, Matthew J., Mir, Lluis M., Tieleman, D. Peter
Formato: Texto
Lenguaje:English
Publicado: Public Library of Science 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2779261/
https://www.ncbi.nlm.nih.gov/pubmed/19956595
http://dx.doi.org/10.1371/journal.pone.0007966
Descripción
Sumario:Reversible electropermeabilization (electroporation) is widely used to facilitate the introduction of genetic material and pharmaceutical agents into living cells. Although considerable knowledge has been gained from the study of real and simulated model membranes in electric fields, efforts to optimize electroporation protocols are limited by a lack of detailed understanding of the molecular basis for the electropermeabilization of the complex biomolecular assembly that forms the plasma membrane. We show here, with results from both molecular dynamics simulations and experiments with living cells, that the oxidation of membrane components enhances the susceptibility of the membrane to electropermeabilization. Manipulation of the level of oxidative stress in cell suspensions and in tissues may lead to more efficient permeabilization procedures in the laboratory and in clinical applications such as electrochemotherapy and electrotransfection-mediated gene therapy.