Cargando…

Identification of the Schistosoma mansoni TNF-Alpha Receptor Gene and the Effect of Human TNF-Alpha on the Parasite Gene Expression Profile

BACKGROUND: Schistosoma mansoni is the major causative agent of schistosomiasis. The parasite takes advantage of host signals to complete its development in the human body. Tumor necrosis factor-alpha (TNF-α) is a human cytokine involved in skin inflammatory responses, and although its effect on the...

Descripción completa

Detalles Bibliográficos
Autores principales: Oliveira, Katia C., Carvalho, Mariana L. P., Venancio, Thiago M., Miyasato, Patricia A., Kawano, Toshie, DeMarco, Ricardo, Verjovski-Almeida, Sergio
Formato: Texto
Lenguaje:English
Publicado: Public Library of Science 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2779652/
https://www.ncbi.nlm.nih.gov/pubmed/19956564
http://dx.doi.org/10.1371/journal.pntd.0000556
Descripción
Sumario:BACKGROUND: Schistosoma mansoni is the major causative agent of schistosomiasis. The parasite takes advantage of host signals to complete its development in the human body. Tumor necrosis factor-alpha (TNF-α) is a human cytokine involved in skin inflammatory responses, and although its effect on the adult parasite's metabolism and egg-laying process has been previously described, a comprehensive assessment of the TNF-α pathway and its downstream molecular effects is lacking. METHODOLOGY/PRINCIPAL FINDINGS: In the present work we describe a possible TNF-α receptor (TNFR) homolog gene in S. mansoni (SmTNFR). SmTNFR encodes a complete receptor sequence composed of 599 amino acids, and contains four cysteine-rich domains as described for TNFR members. Real-time RT-PCR experiments revealed that SmTNFR highest expression level is in cercariae, 3.5 (±0.7) times higher than in adult worms. Downstream members of the known human TNF-α pathway were identified by an in silico analysis, revealing a possible TNF-α signaling pathway in the parasite. In order to simulate parasite's exposure to human cytokine during penetration of the skin, schistosomula were exposed to human TNF-α just 3 h after cercariae-to-schistosomula in vitro transformation, and large-scale gene expression measurements were performed with microarrays. A total of 548 genes with significantly altered expression were detected, when compared to control parasites. In addition, treatment of adult worms with TNF-α caused a significantly altered expression of 1857 genes. Interestingly, the set of genes altered in adults is different from that of schistosomula, with 58 genes in common, representing 3% of altered genes in adults and 11% in 3 h-old early schistosomula. CONCLUSIONS/SIGNIFICANCE: We describe the possible molecular elements and targets involved in human TNF-α effect on S. mansoni, highlighting the mechanism by which recently transformed schistosomula may sense and respond to this host mediator at the site of cercarial penetration into the skin.