Cargando…
Laplacian Eigenfunctions Learn Population Structure
Principal components analysis has been used for decades to summarize genetic variation across geographic regions and to infer population migration history. More recently, with the advent of genome-wide association studies of complex traits, it has become a commonly-used tool for detection and correc...
Autores principales: | Zhang, Jun, Niyogi, Partha, McPeek, Mary Sara |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2779848/ https://www.ncbi.nlm.nih.gov/pubmed/19956572 http://dx.doi.org/10.1371/journal.pone.0007928 |
Ejemplares similares
-
Ancestral Informative Marker Selection and Population Structure Visualization Using Sparse Laplacian Eigenfunctions
por: Zhang, Jun
Publicado: (2010) -
Expansions in eigenfunctions of selfadjoint operators
por: Berezanskiĭ, Ju M
Publicado: (1968) -
Spin eigenfunctions: construction and use
por: Pauncz, Ruben
Publicado: (1979) -
BRASS: Permutation methods for binary traits in genetic association studies with structured samples
por: Mbatchou, Joelle, et al.
Publicado: (2023) -
Vortex knots in tangled quantum eigenfunctions
por: Taylor, Alexander J., et al.
Publicado: (2016)