Cargando…
Glucagon-Like Peptide-1 Agonists Protect Pancreatic β-Cells From Lipotoxic Endoplasmic Reticulum Stress Through Upregulation of BiP and JunB
OBJECTIVE: Chronic exposure of pancreatic β-cells to saturated free fatty acids (FFAs) causes endoplasmic reticulum (ER) stress and apoptosis and may contribute to β-cell loss in type 2 diabetes. Here, we evaluated the molecular mechanisms involved in the protection of β-cells from lipotoxic ER stre...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
American Diabetes Association
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2780890/ https://www.ncbi.nlm.nih.gov/pubmed/19720788 http://dx.doi.org/10.2337/db09-0685 |
Sumario: | OBJECTIVE: Chronic exposure of pancreatic β-cells to saturated free fatty acids (FFAs) causes endoplasmic reticulum (ER) stress and apoptosis and may contribute to β-cell loss in type 2 diabetes. Here, we evaluated the molecular mechanisms involved in the protection of β-cells from lipotoxic ER stress by glucagon-like peptide (GLP)-1 agonists utilized in the treatment of type 2 diabetes. RESEARCH DESIGN AND METHODS: INS-1E or fluorescence-activated cell sorter–purified primary rat β-cells were exposed to oleate or palmitate with or without the GLP-1 agonist exendin-4 or forskolin. Cyclopiazonic acid was used as a synthetic ER stressor, while the activating transcription factor 4–C/EBP homologous protein branch was selectively activated with salubrinal. The ER stress signaling pathways modulated by GLP-1 agonists were studied by real-time PCR and Western blot. Knockdown by RNA interference was used to identify mediators of the antiapoptotic GLP-1 effects in the ER stress response and downstream mitochondrial cell death mechanisms. RESULTS: Exendin-4 and forskolin protected β-cells against FFAs via the induction of the ER chaperone BiP and the antiapoptotic protein JunB that mediate β-cell survival under lipotoxic conditions. On the other hand, exendin-4 and forskolin protected against synthetic ER stressors by inactivating caspase 12 and upregulating Bcl-2 and X-chromosome–linked inhibitor of apoptosis protein that inhibit mitochondrial apoptosis. CONCLUSIONS: These observations suggest that GLP-1 agonists increase in a context-dependent way the β-cell defense mechanisms against different pathways involved in ER stress–induced apoptosis. The identification of the pathways modulated by GLP-1 agonists allows for targeted approaches to alleviate β-cell ER stress in diabetes. |
---|