Cargando…
Robust algorithm for arrhythmia classification in ECG using extreme learning machine
BACKGROUND: Recently, extensive studies have been carried out on arrhythmia classification algorithms using artificial intelligence pattern recognition methods such as neural network. To improve practicality, many studies have focused on learning speed and the accuracy of neural networks. However, a...
Autores principales: | Kim, Jinkwon, Shin, Hang Sik, Shin, Kwangsoo, Lee, Myoungho |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2781013/ https://www.ncbi.nlm.nih.gov/pubmed/19863819 http://dx.doi.org/10.1186/1475-925X-8-31 |
Ejemplares similares
-
Classification of BMI control commands from rat's neural signals using extreme learning machine
por: Lee, Youngbum, et al.
Publicado: (2009) -
An arrhythmia classification algorithm using a dedicated wavelet adapted to different subjects
por: Kim, Jinkwon, et al.
Publicado: (2011) -
ECG Classification for Detecting ECG Arrhythmia Empowered with Deep Learning Approaches
por: Rahman, Atta-ur, et al.
Publicado: (2022) -
ECG-based machine-learning algorithms for heartbeat classification
por: Aziz, Saira, et al.
Publicado: (2021) -
An ECG Stitching Scheme for Driver Arrhythmia Classification Based on Deep Learning
por: Kim, Do Hoon, et al.
Publicado: (2023)