Cargando…

New therapies in the management of Niemann-Pick type C disease: clinical utility of miglustat

Niemann-Pick disease type C (NP-C) is an autosomal recessive disorder characterized by progressive neurological deterioration leading to premature death. The disease is caused by mutations in one of two genes, NPC1 or NPC2, leading to impaired intracellular lipid transport and build-up of lipids in...

Descripción completa

Detalles Bibliográficos
Autores principales: Wraith, James E, Imrie, Jackie
Formato: Texto
Lenguaje:English
Publicado: Dove Medical Press 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2781062/
https://www.ncbi.nlm.nih.gov/pubmed/19956552
Descripción
Sumario:Niemann-Pick disease type C (NP-C) is an autosomal recessive disorder characterized by progressive neurological deterioration leading to premature death. The disease is caused by mutations in one of two genes, NPC1 or NPC2, leading to impaired intracellular lipid transport and build-up of lipids in various tissues, particularly the brain. Miglustat (Zavesca®), a reversible inhibitor of glycosphingolipid synthesis, has recently been authorized in the European Union, Brazil and South Korea for the treatment of progressive neurological symptoms in adult and pediatric patients, and represents the first specific treatment for NP-C. Here we review current data on the pharmacology, efficacy, safety and tolerability of miglustat in patients with NP-C, based on findings from a prospective clinical trial, preclinical and retrospective studies, and case reports. Findings demonstrated clinically relevant beneficial effects of miglustat on neurological disease progression in adult, juvenile and pediatric patients with NP-C, particularly those diagnosed in late childhood (6–11 years) and in juveniles and adults (12 years and older), compared with those diagnosed in early childhood (younger than 6 years). Miglustat therapy was well-tolerated in all age groups. With the approval of miglustat, treatment of patients with NP-C can now be aimed toward stabilizing neurological disease, which is likely the best attainable therapeutic goal for this disorder.