Cargando…
What Do Transitive Inference and Class Inclusion Have in Common? Categorical (Co)Products and Cognitive Development
Transitive inference, class inclusion and a variety of other inferential abilities have strikingly similar developmental profiles—all are acquired around the age of five. Yet, little is known about the reasons for this correspondence. Category theory was invented as a formal means of establishing co...
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2781167/ https://www.ncbi.nlm.nih.gov/pubmed/20011111 http://dx.doi.org/10.1371/journal.pcbi.1000599 |
_version_ | 1782174572116705280 |
---|---|
author | Phillips, Steven Wilson, William H. Halford, Graeme S. |
author_facet | Phillips, Steven Wilson, William H. Halford, Graeme S. |
author_sort | Phillips, Steven |
collection | PubMed |
description | Transitive inference, class inclusion and a variety of other inferential abilities have strikingly similar developmental profiles—all are acquired around the age of five. Yet, little is known about the reasons for this correspondence. Category theory was invented as a formal means of establishing commonalities between various mathematical structures. We use category theory to show that transitive inference and class inclusion involve dual mathematical structures, called product and coproduct. Other inferential tasks with similar developmental profiles, including matrix completion, cardinality, dimensional changed card sorting, balance-scale (weight-distance integration), and Theory of Mind also involve these structures. By contrast, (co)products are not involved in the behaviours exhibited by younger children on these tasks, or simplified versions that are within their ability. These results point to a fundamental cognitive principle under development during childhood that is the capacity to compute (co)products in the categorical sense. |
format | Text |
id | pubmed-2781167 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2009 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-27811672009-12-15 What Do Transitive Inference and Class Inclusion Have in Common? Categorical (Co)Products and Cognitive Development Phillips, Steven Wilson, William H. Halford, Graeme S. PLoS Comput Biol Research Article Transitive inference, class inclusion and a variety of other inferential abilities have strikingly similar developmental profiles—all are acquired around the age of five. Yet, little is known about the reasons for this correspondence. Category theory was invented as a formal means of establishing commonalities between various mathematical structures. We use category theory to show that transitive inference and class inclusion involve dual mathematical structures, called product and coproduct. Other inferential tasks with similar developmental profiles, including matrix completion, cardinality, dimensional changed card sorting, balance-scale (weight-distance integration), and Theory of Mind also involve these structures. By contrast, (co)products are not involved in the behaviours exhibited by younger children on these tasks, or simplified versions that are within their ability. These results point to a fundamental cognitive principle under development during childhood that is the capacity to compute (co)products in the categorical sense. Public Library of Science 2009-12-11 /pmc/articles/PMC2781167/ /pubmed/20011111 http://dx.doi.org/10.1371/journal.pcbi.1000599 Text en Phillips et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Phillips, Steven Wilson, William H. Halford, Graeme S. What Do Transitive Inference and Class Inclusion Have in Common? Categorical (Co)Products and Cognitive Development |
title | What Do Transitive Inference and Class Inclusion Have in Common? Categorical (Co)Products and Cognitive Development |
title_full | What Do Transitive Inference and Class Inclusion Have in Common? Categorical (Co)Products and Cognitive Development |
title_fullStr | What Do Transitive Inference and Class Inclusion Have in Common? Categorical (Co)Products and Cognitive Development |
title_full_unstemmed | What Do Transitive Inference and Class Inclusion Have in Common? Categorical (Co)Products and Cognitive Development |
title_short | What Do Transitive Inference and Class Inclusion Have in Common? Categorical (Co)Products and Cognitive Development |
title_sort | what do transitive inference and class inclusion have in common? categorical (co)products and cognitive development |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2781167/ https://www.ncbi.nlm.nih.gov/pubmed/20011111 http://dx.doi.org/10.1371/journal.pcbi.1000599 |
work_keys_str_mv | AT phillipssteven whatdotransitiveinferenceandclassinclusionhaveincommoncategoricalcoproductsandcognitivedevelopment AT wilsonwilliamh whatdotransitiveinferenceandclassinclusionhaveincommoncategoricalcoproductsandcognitivedevelopment AT halfordgraemes whatdotransitiveinferenceandclassinclusionhaveincommoncategoricalcoproductsandcognitivedevelopment |