Cargando…
Automated DNA mutation detection using universal conditions direct sequencing: application to ten muscular dystrophy genes
BACKGROUND: One of the most common and efficient methods for detecting mutations in genes is PCR amplification followed by direct sequencing. Until recently, the process of designing PCR assays has been to focus on individual assay parameters rather than concentrating on matching conditions for a se...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2781300/ https://www.ncbi.nlm.nih.gov/pubmed/19835634 http://dx.doi.org/10.1186/1471-2156-10-66 |
_version_ | 1782174574036647936 |
---|---|
author | Bennett, Richard R Schneider, Hal E Estrella, Elicia Burgess, Stephanie Cheng, Andrew S Barrett, Caitlin Lip, Va Lai, Poh San Shen, Yiping Wu, Bai-Lin Darras, Basil T Beggs, Alan H Kunkel, Louis M |
author_facet | Bennett, Richard R Schneider, Hal E Estrella, Elicia Burgess, Stephanie Cheng, Andrew S Barrett, Caitlin Lip, Va Lai, Poh San Shen, Yiping Wu, Bai-Lin Darras, Basil T Beggs, Alan H Kunkel, Louis M |
author_sort | Bennett, Richard R |
collection | PubMed |
description | BACKGROUND: One of the most common and efficient methods for detecting mutations in genes is PCR amplification followed by direct sequencing. Until recently, the process of designing PCR assays has been to focus on individual assay parameters rather than concentrating on matching conditions for a set of assays. Primers for each individual assay were selected based on location and sequence concerns. The two primer sequences were then iteratively adjusted to make the individual assays work properly. This generally resulted in groups of assays with different annealing temperatures that required the use of multiple thermal cyclers or multiple passes in a single thermal cycler making diagnostic testing time-consuming, laborious and expensive. These factors have severely hampered diagnostic testing services, leaving many families without an answer for the exact cause of a familial genetic disease. A search of GeneTests for sequencing analysis of the entire coding sequence for genes that are known to cause muscular dystrophies returns only a small list of laboratories that perform comprehensive gene panels. The hypothesis for the study was that a complete set of universal assays can be designed to amplify and sequence any gene or family of genes using computer aided design tools. If true, this would allow automation and optimization of the mutation detection process resulting in reduced cost and increased throughput. RESULTS: An automated process has been developed for the detection of deletions, duplications/insertions and point mutations in any gene or family of genes and has been applied to ten genes known to bear mutations that cause muscular dystrophy: DMD; CAV3; CAPN3; FKRP; TRIM32; LMNA; SGCA; SGCB; SGCG; SGCD. Using this process, mutations have been found in five DMD patients and four LGMD patients (one in the FKRP gene, one in the CAV3 gene, and two likely causative heterozygous pairs of variations in the CAPN3 gene of two other patients). Methods and assay sequences are reported in this paper. CONCLUSION: This automated process allows laboratories to discover DNA variations in a short time and at low cost. |
format | Text |
id | pubmed-2781300 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2009 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-27813002009-11-25 Automated DNA mutation detection using universal conditions direct sequencing: application to ten muscular dystrophy genes Bennett, Richard R Schneider, Hal E Estrella, Elicia Burgess, Stephanie Cheng, Andrew S Barrett, Caitlin Lip, Va Lai, Poh San Shen, Yiping Wu, Bai-Lin Darras, Basil T Beggs, Alan H Kunkel, Louis M BMC Genet Methodology Article BACKGROUND: One of the most common and efficient methods for detecting mutations in genes is PCR amplification followed by direct sequencing. Until recently, the process of designing PCR assays has been to focus on individual assay parameters rather than concentrating on matching conditions for a set of assays. Primers for each individual assay were selected based on location and sequence concerns. The two primer sequences were then iteratively adjusted to make the individual assays work properly. This generally resulted in groups of assays with different annealing temperatures that required the use of multiple thermal cyclers or multiple passes in a single thermal cycler making diagnostic testing time-consuming, laborious and expensive. These factors have severely hampered diagnostic testing services, leaving many families without an answer for the exact cause of a familial genetic disease. A search of GeneTests for sequencing analysis of the entire coding sequence for genes that are known to cause muscular dystrophies returns only a small list of laboratories that perform comprehensive gene panels. The hypothesis for the study was that a complete set of universal assays can be designed to amplify and sequence any gene or family of genes using computer aided design tools. If true, this would allow automation and optimization of the mutation detection process resulting in reduced cost and increased throughput. RESULTS: An automated process has been developed for the detection of deletions, duplications/insertions and point mutations in any gene or family of genes and has been applied to ten genes known to bear mutations that cause muscular dystrophy: DMD; CAV3; CAPN3; FKRP; TRIM32; LMNA; SGCA; SGCB; SGCG; SGCD. Using this process, mutations have been found in five DMD patients and four LGMD patients (one in the FKRP gene, one in the CAV3 gene, and two likely causative heterozygous pairs of variations in the CAPN3 gene of two other patients). Methods and assay sequences are reported in this paper. CONCLUSION: This automated process allows laboratories to discover DNA variations in a short time and at low cost. BioMed Central 2009-10-18 /pmc/articles/PMC2781300/ /pubmed/19835634 http://dx.doi.org/10.1186/1471-2156-10-66 Text en Copyright ©2009 Bennett et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Methodology Article Bennett, Richard R Schneider, Hal E Estrella, Elicia Burgess, Stephanie Cheng, Andrew S Barrett, Caitlin Lip, Va Lai, Poh San Shen, Yiping Wu, Bai-Lin Darras, Basil T Beggs, Alan H Kunkel, Louis M Automated DNA mutation detection using universal conditions direct sequencing: application to ten muscular dystrophy genes |
title | Automated DNA mutation detection using universal conditions direct sequencing: application to ten muscular dystrophy genes |
title_full | Automated DNA mutation detection using universal conditions direct sequencing: application to ten muscular dystrophy genes |
title_fullStr | Automated DNA mutation detection using universal conditions direct sequencing: application to ten muscular dystrophy genes |
title_full_unstemmed | Automated DNA mutation detection using universal conditions direct sequencing: application to ten muscular dystrophy genes |
title_short | Automated DNA mutation detection using universal conditions direct sequencing: application to ten muscular dystrophy genes |
title_sort | automated dna mutation detection using universal conditions direct sequencing: application to ten muscular dystrophy genes |
topic | Methodology Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2781300/ https://www.ncbi.nlm.nih.gov/pubmed/19835634 http://dx.doi.org/10.1186/1471-2156-10-66 |
work_keys_str_mv | AT bennettrichardr automateddnamutationdetectionusinguniversalconditionsdirectsequencingapplicationtotenmusculardystrophygenes AT schneiderhale automateddnamutationdetectionusinguniversalconditionsdirectsequencingapplicationtotenmusculardystrophygenes AT estrellaelicia automateddnamutationdetectionusinguniversalconditionsdirectsequencingapplicationtotenmusculardystrophygenes AT burgessstephanie automateddnamutationdetectionusinguniversalconditionsdirectsequencingapplicationtotenmusculardystrophygenes AT chengandrews automateddnamutationdetectionusinguniversalconditionsdirectsequencingapplicationtotenmusculardystrophygenes AT barrettcaitlin automateddnamutationdetectionusinguniversalconditionsdirectsequencingapplicationtotenmusculardystrophygenes AT lipva automateddnamutationdetectionusinguniversalconditionsdirectsequencingapplicationtotenmusculardystrophygenes AT laipohsan automateddnamutationdetectionusinguniversalconditionsdirectsequencingapplicationtotenmusculardystrophygenes AT shenyiping automateddnamutationdetectionusinguniversalconditionsdirectsequencingapplicationtotenmusculardystrophygenes AT wubailin automateddnamutationdetectionusinguniversalconditionsdirectsequencingapplicationtotenmusculardystrophygenes AT darrasbasilt automateddnamutationdetectionusinguniversalconditionsdirectsequencingapplicationtotenmusculardystrophygenes AT beggsalanh automateddnamutationdetectionusinguniversalconditionsdirectsequencingapplicationtotenmusculardystrophygenes AT kunkellouism automateddnamutationdetectionusinguniversalconditionsdirectsequencingapplicationtotenmusculardystrophygenes |