Cargando…
Statistical methods for gene set co-expression analysis
Motivation: The power of a microarray experiment derives from the identification of genes differentially regulated across biological conditions. To date, differential regulation is most often taken to mean differential expression, and a number of useful methods for identifying differentially express...
Autores principales: | Choi, YounJeong, Kendziorski, Christina |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2781749/ https://www.ncbi.nlm.nih.gov/pubmed/19689953 http://dx.doi.org/10.1093/bioinformatics/btp502 |
Ejemplares similares
-
Gene set analysis methods: statistical models and methodological differences
por: Maciejewski, Henryk
Publicado: (2014) -
MADGiC: a model-based approach for identifying driver genes in cancer
por: Korthauer, Keegan D., et al.
Publicado: (2015) -
Statistical Methods for Latent Class Quantitative Trait Loci Mapping
por: Ye, Shuyun, et al.
Publicado: (2017) -
EBSeq-HMM: a Bayesian approach for identifying gene-expression changes in ordered RNA-seq experiments
por: Leng, Ning, et al.
Publicado: (2015) -
Enriching the gene set analysis of genome-wide data by incorporating directionality of gene expression and combining statistical hypotheses and methods
por: Väremo, Leif, et al.
Publicado: (2013)