Cargando…
Quantifying cancer progression with conjunctive Bayesian networks
Motivation: Cancer is an evolutionary process characterized by accumulating mutations. However, the precise timing and the order of genetic alterations that drive tumor progression remain enigmatic. Results: We present a specific probabilistic graphical model for the accumulation of mutations and th...
Autores principales: | Gerstung, Moritz, Baudis, Michael, Moch, Holger, Beerenwinkel, Niko |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2781752/ https://www.ncbi.nlm.nih.gov/pubmed/19692554 http://dx.doi.org/10.1093/bioinformatics/btp505 |
Ejemplares similares
-
Cancer Evolution: Mathematical Models and Computational Inference
por: Beerenwinkel, Niko, et al.
Publicado: (2015) -
The Temporal Order of Genetic and Pathway Alterations in Tumorigenesis
por: Gerstung, Moritz, et al.
Publicado: (2011) -
Discovering gene regulatory networks of multiple phenotypic groups using dynamic Bayesian networks
por: Suter, Polina, et al.
Publicado: (2022) -
BnpC: Bayesian non-parametric clustering of single-cell mutation profiles
por: Borgsmüller, Nico, et al.
Publicado: (2020) -
Inferring perturbation profiles of cancer samples
por: Pirkl, Martin, et al.
Publicado: (2021)