Cargando…
Cj0596 is a periplasmic peptidyl prolyl cis-trans isomerase involved in Campylobacter jejuni motility, invasion, and colonization
BACKGROUND: Campylobacter jejuni is a gastrointestinal pathogen of humans, but part of the normal flora of poultry, and therefore grows well at the respective body temperatures of 37°C and 42°C. Proteomic studies on temperature regulation in C. jejuni strain 81–176 revealed the upregulation at 37°C...
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2782263/ https://www.ncbi.nlm.nih.gov/pubmed/19664234 http://dx.doi.org/10.1186/1471-2180-9-160 |
Sumario: | BACKGROUND: Campylobacter jejuni is a gastrointestinal pathogen of humans, but part of the normal flora of poultry, and therefore grows well at the respective body temperatures of 37°C and 42°C. Proteomic studies on temperature regulation in C. jejuni strain 81–176 revealed the upregulation at 37°C of Cj0596, a predicted periplasmic chaperone that is similar to proteins involved in outer membrane protein folding and virulence in other bacteria. RESULTS: The cj0596 gene was highly conserved in 24 strains and species of Campylobacter, implying the importance of this gene. To study the role that Cj0596 plays in C. jejuni pathogenesis, a mutant derivative of strain 81–176 was constructed in which the cj0596 gene was precisely deleted. A revertant of this mutant was isolated by restoring the gene to its original chromosomal location using streptomycin counterselection. The cj0596 mutant strain demonstrated a slightly decreased growth rate and lower final growth yield, yet was more motile and more invasive of human intestinal epithelial cells than wild-type. In either single or mixed infections, the mutant was less able to colonize mice than 81–176. The cj0596 mutant also expressed altered levels of several proteins. CONCLUSION: Mutation of cj0596 has an effect on phenotypes related to C. jejuni pathogenesis, probably due to its role in the proper folding of critical outer membrane proteins. |
---|