Cargando…

Overexpression of the malate–aspartate NADH shuttle member Aralar1 in the clonal β-cell line BRIN-BD11 enhances amino-acid-stimulated insulin secretion and cell metabolism

In the present study, we have investigated the effects of the transduction with recombinant adenovirus AdCA-Aralar1 (aspartate–glutamate carrier 1) on the metabolism, function and secretory properties of the glucose- and amino-acid-responsive clonal insulin-secreting cell line BRIN-BD11. Aralar1 ove...

Descripción completa

Detalles Bibliográficos
Autores principales: Bender, Katrin, Maechler, Pierre, McClenaghan, Neville H., Flatt, Peter R., Newsholme, Philip
Formato: Texto
Lenguaje:English
Publicado: Portland Press Ltd. 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2782311/
https://www.ncbi.nlm.nih.gov/pubmed/19344310
http://dx.doi.org/10.1042/CS20090126
Descripción
Sumario:In the present study, we have investigated the effects of the transduction with recombinant adenovirus AdCA-Aralar1 (aspartate–glutamate carrier 1) on the metabolism, function and secretory properties of the glucose- and amino-acid-responsive clonal insulin-secreting cell line BRIN-BD11. Aralar1 overexpression increased long-term (24 h) and acute (20 min) glucose- and amino-acid-stimulated insulin secretion, cellular glucose metabolism, L-alanine and L-glutamine consumption, cellular ATP and glutamate concentrations, and stimulated glutamate release. However, cellular triacylglycerol and glycogen contents were decreased as was lactate production. These findings indicate that increased malate–aspartate shuttle activity positively shifted β-cell metabolism, thereby increasing glycolysis capacity, stimulus–secretion coupling and, ultimately, enhancing insulin secretion. We conclude that Aralar1 is a key metabolic control site in insulin-secreting cells.