Cargando…

Genetic Polymorphisms in Genes Encoding Antioxidant Enzymes Are Associated With Diabetic Retinopathy in Type 1 Diabetes

OBJECTIVE: Oxidative stress plays an important role in the development of microangiopathic complications in type 1 diabetes. We investigated polymorphic markers in genes encoding enzymes regulating production of reactive oxygen species in association with diabetic retinopathy or diabetic nephropathy...

Descripción completa

Detalles Bibliográficos
Autores principales: Hovnik, Tinka, Dolžan, Vita, Bratina, Nataša Uršič, Podkrajšek, Katarina Trebušak, Battelino, Tadej
Formato: Texto
Lenguaje:English
Publicado: American Diabetes Association 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2782987/
https://www.ncbi.nlm.nih.gov/pubmed/19752172
http://dx.doi.org/10.2337/dc09-0852
Descripción
Sumario:OBJECTIVE: Oxidative stress plays an important role in the development of microangiopathic complications in type 1 diabetes. We investigated polymorphic markers in genes encoding enzymes regulating production of reactive oxygen species in association with diabetic retinopathy or diabetic nephropathy. RESEARCH DESIGN AND METHODS: A total of 124 patients with type 1 diabetes were investigated in this case-control study. All subjects were matched for sex, age, and duration of diabetes. Genotyping was conducted using real-time PCR for p.Val16Ala polymorphism in the MnSOD gene and c.C−262T in the promoter region of the CAT gene. Multiplex PCR method was used for determination of GSTM1 and GSTT1 polymorphic deletions. Fluorescence-labeled PCR amplicons and fragment analysis was used for assessing the number of pentanucleotide (CCTTT)n repeats in inducible nitric oxide synthase. RESULTS: A positive association of MnSOD genotype Val/Val (odds ratio [OR] 2.49, 95% CI 1.00–6.16, P = 0.045) and GSTM1–1 genotype (2.63, 1.07–6.47, P = 0.031) with diabetic retinopathy but not with diabetic nephropathy was demonstrated. Additionally, the combination of the two genotypes conveyed an even higher risk (4.24, 1.37–13.40, P = 0.009). No other investigated genetic polymorphisms were associated with either diabetic retinopathy or diabetic nephropathy. CONCLUSIONS: Selected polymorphisms in genes encoding MnSOD and GSTM1 could be added to a panel of genetic markers for identification of individuals with type 1 diabetes at an increased risk for developing diabetic retinopathy.