Cargando…

Examination of polymorphic glutathione S-transferase (GST) genes, tobacco smoking and prostate cancer risk among Men of African Descent: A case-control study

BACKGROUND: Polymorphisms in glutathione S-transferase (GST) genes may influence response to oxidative stress and modify prostate cancer (PCA) susceptibility. These enzymes generally detoxify endogenous and exogenous agents, but also participate in the activation and inactivation of oxidative metabo...

Descripción completa

Detalles Bibliográficos
Autores principales: Lavender, Nicole A, Benford, Marnita L, VanCleave, Tiva T, Brock, Guy N, Kittles, Rick A, Moore, Jason H, Hein, David W, Kidd, La Creis R
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2783040/
https://www.ncbi.nlm.nih.gov/pubmed/19917083
http://dx.doi.org/10.1186/1471-2407-9-397
_version_ 1782174661471109120
author Lavender, Nicole A
Benford, Marnita L
VanCleave, Tiva T
Brock, Guy N
Kittles, Rick A
Moore, Jason H
Hein, David W
Kidd, La Creis R
author_facet Lavender, Nicole A
Benford, Marnita L
VanCleave, Tiva T
Brock, Guy N
Kittles, Rick A
Moore, Jason H
Hein, David W
Kidd, La Creis R
author_sort Lavender, Nicole A
collection PubMed
description BACKGROUND: Polymorphisms in glutathione S-transferase (GST) genes may influence response to oxidative stress and modify prostate cancer (PCA) susceptibility. These enzymes generally detoxify endogenous and exogenous agents, but also participate in the activation and inactivation of oxidative metabolites that may contribute to PCA development. Genetic variations within selected GST genes may influence PCA risk following exposure to carcinogen compounds found in cigarette smoke and decreased the ability to detoxify them. Thus, we evaluated the effects of polymorphic GSTs (M1, T1, and P1) alone and combined with cigarette smoking on PCA susceptibility. METHODS: In order to evaluate the effects of GST polymorphisms in relation to PCA risk, we used TaqMan allelic discrimination assays along with a multi-faceted statistical strategy involving conventional and advanced statistical methodologies (e.g., Multifactor Dimensionality Reduction and Interaction Graphs). Genetic profiles collected from 873 men of African-descent (208 cases and 665 controls) were utilized to systematically evaluate the single and joint modifying effects of GSTM1 and GSTT1 gene deletions, GSTP1 105 Val and cigarette smoking on PCA risk. RESULTS: We observed a moderately significant association between risk among men possessing at least one variant GSTP1 105 Val allele (OR = 1.56; 95%CI = 0.95-2.58; p = 0.049), which was confirmed by MDR permutation testing (p = 0.001). We did not observe any significant single gene effects among GSTM1 (OR = 1.08; 95%CI = 0.65-1.82; p = 0.718) and GSTT1 (OR = 1.15; 95%CI = 0.66-2.02; p = 0.622) on PCA risk among all subjects. Although the GSTM1-GSTP1 pairwise combination was selected as the best two factor LR and MDR models (p = 0.01), assessment of the hierarchical entropy graph suggested that the observed synergistic effect was primarily driven by the GSTP1 Val marker. Notably, the GSTM1-GSTP1 axis did not provide additional information gain when compared to either loci alone based on a hierarchical entropy algorithm and graph. Smoking status did not significantly modify the relationship between the GST SNPs and PCA. CONCLUSION: A moderately significant association was observed between PCA risk and men possessing at least one variant GSTP1 105 Val allele (p = 0.049) among men of African descent. We also observed a 2.1-fold increase in PCA risk associated with men possessing the GSTP1 (Val/Val) and GSTM1 (*1/*1 + *1/*0) alleles. MDR analysis validated these findings; detecting GSTP1 105 Val (p = 0.001) as the best single factor for predicting PCA risk. Our findings emphasize the importance of utilizing a combination of traditional and advanced statistical tools to identify and validate single gene and multi-locus interactions in relation to cancer susceptibility.
format Text
id pubmed-2783040
institution National Center for Biotechnology Information
language English
publishDate 2009
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-27830402009-11-26 Examination of polymorphic glutathione S-transferase (GST) genes, tobacco smoking and prostate cancer risk among Men of African Descent: A case-control study Lavender, Nicole A Benford, Marnita L VanCleave, Tiva T Brock, Guy N Kittles, Rick A Moore, Jason H Hein, David W Kidd, La Creis R BMC Cancer Research Article BACKGROUND: Polymorphisms in glutathione S-transferase (GST) genes may influence response to oxidative stress and modify prostate cancer (PCA) susceptibility. These enzymes generally detoxify endogenous and exogenous agents, but also participate in the activation and inactivation of oxidative metabolites that may contribute to PCA development. Genetic variations within selected GST genes may influence PCA risk following exposure to carcinogen compounds found in cigarette smoke and decreased the ability to detoxify them. Thus, we evaluated the effects of polymorphic GSTs (M1, T1, and P1) alone and combined with cigarette smoking on PCA susceptibility. METHODS: In order to evaluate the effects of GST polymorphisms in relation to PCA risk, we used TaqMan allelic discrimination assays along with a multi-faceted statistical strategy involving conventional and advanced statistical methodologies (e.g., Multifactor Dimensionality Reduction and Interaction Graphs). Genetic profiles collected from 873 men of African-descent (208 cases and 665 controls) were utilized to systematically evaluate the single and joint modifying effects of GSTM1 and GSTT1 gene deletions, GSTP1 105 Val and cigarette smoking on PCA risk. RESULTS: We observed a moderately significant association between risk among men possessing at least one variant GSTP1 105 Val allele (OR = 1.56; 95%CI = 0.95-2.58; p = 0.049), which was confirmed by MDR permutation testing (p = 0.001). We did not observe any significant single gene effects among GSTM1 (OR = 1.08; 95%CI = 0.65-1.82; p = 0.718) and GSTT1 (OR = 1.15; 95%CI = 0.66-2.02; p = 0.622) on PCA risk among all subjects. Although the GSTM1-GSTP1 pairwise combination was selected as the best two factor LR and MDR models (p = 0.01), assessment of the hierarchical entropy graph suggested that the observed synergistic effect was primarily driven by the GSTP1 Val marker. Notably, the GSTM1-GSTP1 axis did not provide additional information gain when compared to either loci alone based on a hierarchical entropy algorithm and graph. Smoking status did not significantly modify the relationship between the GST SNPs and PCA. CONCLUSION: A moderately significant association was observed between PCA risk and men possessing at least one variant GSTP1 105 Val allele (p = 0.049) among men of African descent. We also observed a 2.1-fold increase in PCA risk associated with men possessing the GSTP1 (Val/Val) and GSTM1 (*1/*1 + *1/*0) alleles. MDR analysis validated these findings; detecting GSTP1 105 Val (p = 0.001) as the best single factor for predicting PCA risk. Our findings emphasize the importance of utilizing a combination of traditional and advanced statistical tools to identify and validate single gene and multi-locus interactions in relation to cancer susceptibility. BioMed Central 2009-11-16 /pmc/articles/PMC2783040/ /pubmed/19917083 http://dx.doi.org/10.1186/1471-2407-9-397 Text en Copyright ©2009 Lavender et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Lavender, Nicole A
Benford, Marnita L
VanCleave, Tiva T
Brock, Guy N
Kittles, Rick A
Moore, Jason H
Hein, David W
Kidd, La Creis R
Examination of polymorphic glutathione S-transferase (GST) genes, tobacco smoking and prostate cancer risk among Men of African Descent: A case-control study
title Examination of polymorphic glutathione S-transferase (GST) genes, tobacco smoking and prostate cancer risk among Men of African Descent: A case-control study
title_full Examination of polymorphic glutathione S-transferase (GST) genes, tobacco smoking and prostate cancer risk among Men of African Descent: A case-control study
title_fullStr Examination of polymorphic glutathione S-transferase (GST) genes, tobacco smoking and prostate cancer risk among Men of African Descent: A case-control study
title_full_unstemmed Examination of polymorphic glutathione S-transferase (GST) genes, tobacco smoking and prostate cancer risk among Men of African Descent: A case-control study
title_short Examination of polymorphic glutathione S-transferase (GST) genes, tobacco smoking and prostate cancer risk among Men of African Descent: A case-control study
title_sort examination of polymorphic glutathione s-transferase (gst) genes, tobacco smoking and prostate cancer risk among men of african descent: a case-control study
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2783040/
https://www.ncbi.nlm.nih.gov/pubmed/19917083
http://dx.doi.org/10.1186/1471-2407-9-397
work_keys_str_mv AT lavendernicolea examinationofpolymorphicglutathionestransferasegstgenestobaccosmokingandprostatecancerriskamongmenofafricandescentacasecontrolstudy
AT benfordmarnital examinationofpolymorphicglutathionestransferasegstgenestobaccosmokingandprostatecancerriskamongmenofafricandescentacasecontrolstudy
AT vancleavetivat examinationofpolymorphicglutathionestransferasegstgenestobaccosmokingandprostatecancerriskamongmenofafricandescentacasecontrolstudy
AT brockguyn examinationofpolymorphicglutathionestransferasegstgenestobaccosmokingandprostatecancerriskamongmenofafricandescentacasecontrolstudy
AT kittlesricka examinationofpolymorphicglutathionestransferasegstgenestobaccosmokingandprostatecancerriskamongmenofafricandescentacasecontrolstudy
AT moorejasonh examinationofpolymorphicglutathionestransferasegstgenestobaccosmokingandprostatecancerriskamongmenofafricandescentacasecontrolstudy
AT heindavidw examinationofpolymorphicglutathionestransferasegstgenestobaccosmokingandprostatecancerriskamongmenofafricandescentacasecontrolstudy
AT kiddlacreisr examinationofpolymorphicglutathionestransferasegstgenestobaccosmokingandprostatecancerriskamongmenofafricandescentacasecontrolstudy