Cargando…

How to Turn a Genetic Circuit into a Synthetic Tunable Oscillator, or a Bistable Switch

Systems and Synthetic Biology use computational models of biological pathways in order to study in silico the behaviour of biological pathways. Mathematical models allow to verify biological hypotheses and to predict new possible dynamical behaviours. Here we use the tools of non-linear analysis to...

Descripción completa

Detalles Bibliográficos
Autores principales: Marucci, Lucia, Barton, David A. W., Cantone, Irene, Ricci, Maria Aurelia, Cosma, Maria Pia, Santini, Stefania, di Bernardo, Diego, di Bernardo, Mario
Formato: Texto
Lenguaje:English
Publicado: Public Library of Science 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2784219/
https://www.ncbi.nlm.nih.gov/pubmed/19997611
http://dx.doi.org/10.1371/journal.pone.0008083
_version_ 1782174715195949056
author Marucci, Lucia
Barton, David A. W.
Cantone, Irene
Ricci, Maria Aurelia
Cosma, Maria Pia
Santini, Stefania
di Bernardo, Diego
di Bernardo, Mario
author_facet Marucci, Lucia
Barton, David A. W.
Cantone, Irene
Ricci, Maria Aurelia
Cosma, Maria Pia
Santini, Stefania
di Bernardo, Diego
di Bernardo, Mario
author_sort Marucci, Lucia
collection PubMed
description Systems and Synthetic Biology use computational models of biological pathways in order to study in silico the behaviour of biological pathways. Mathematical models allow to verify biological hypotheses and to predict new possible dynamical behaviours. Here we use the tools of non-linear analysis to understand how to change the dynamics of the genes composing a novel synthetic network recently constructed in the yeast Saccharomyces cerevisiae for In-vivo Reverse-engineering and Modelling Assessment (IRMA). Guided by previous theoretical results that make the dynamics of a biological network depend on its topological properties, through the use of simulation and continuation techniques, we found that the network can be easily turned into a robust and tunable synthetic oscillator or a bistable switch. Our results provide guidelines to properly re-engineering in vivo the network in order to tune its dynamics.
format Text
id pubmed-2784219
institution National Center for Biotechnology Information
language English
publishDate 2009
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-27842192009-12-08 How to Turn a Genetic Circuit into a Synthetic Tunable Oscillator, or a Bistable Switch Marucci, Lucia Barton, David A. W. Cantone, Irene Ricci, Maria Aurelia Cosma, Maria Pia Santini, Stefania di Bernardo, Diego di Bernardo, Mario PLoS One Research Article Systems and Synthetic Biology use computational models of biological pathways in order to study in silico the behaviour of biological pathways. Mathematical models allow to verify biological hypotheses and to predict new possible dynamical behaviours. Here we use the tools of non-linear analysis to understand how to change the dynamics of the genes composing a novel synthetic network recently constructed in the yeast Saccharomyces cerevisiae for In-vivo Reverse-engineering and Modelling Assessment (IRMA). Guided by previous theoretical results that make the dynamics of a biological network depend on its topological properties, through the use of simulation and continuation techniques, we found that the network can be easily turned into a robust and tunable synthetic oscillator or a bistable switch. Our results provide guidelines to properly re-engineering in vivo the network in order to tune its dynamics. Public Library of Science 2009-12-07 /pmc/articles/PMC2784219/ /pubmed/19997611 http://dx.doi.org/10.1371/journal.pone.0008083 Text en Marucci et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Marucci, Lucia
Barton, David A. W.
Cantone, Irene
Ricci, Maria Aurelia
Cosma, Maria Pia
Santini, Stefania
di Bernardo, Diego
di Bernardo, Mario
How to Turn a Genetic Circuit into a Synthetic Tunable Oscillator, or a Bistable Switch
title How to Turn a Genetic Circuit into a Synthetic Tunable Oscillator, or a Bistable Switch
title_full How to Turn a Genetic Circuit into a Synthetic Tunable Oscillator, or a Bistable Switch
title_fullStr How to Turn a Genetic Circuit into a Synthetic Tunable Oscillator, or a Bistable Switch
title_full_unstemmed How to Turn a Genetic Circuit into a Synthetic Tunable Oscillator, or a Bistable Switch
title_short How to Turn a Genetic Circuit into a Synthetic Tunable Oscillator, or a Bistable Switch
title_sort how to turn a genetic circuit into a synthetic tunable oscillator, or a bistable switch
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2784219/
https://www.ncbi.nlm.nih.gov/pubmed/19997611
http://dx.doi.org/10.1371/journal.pone.0008083
work_keys_str_mv AT maruccilucia howtoturnageneticcircuitintoasynthetictunableoscillatororabistableswitch
AT bartondavidaw howtoturnageneticcircuitintoasynthetictunableoscillatororabistableswitch
AT cantoneirene howtoturnageneticcircuitintoasynthetictunableoscillatororabistableswitch
AT riccimariaaurelia howtoturnageneticcircuitintoasynthetictunableoscillatororabistableswitch
AT cosmamariapia howtoturnageneticcircuitintoasynthetictunableoscillatororabistableswitch
AT santinistefania howtoturnageneticcircuitintoasynthetictunableoscillatororabistableswitch
AT dibernardodiego howtoturnageneticcircuitintoasynthetictunableoscillatororabistableswitch
AT dibernardomario howtoturnageneticcircuitintoasynthetictunableoscillatororabistableswitch