Cargando…
Apoptosis induction in BEFV-infected Vero and MDBK cells through Src-dependent JNK activation regulates caspase-3 and mitochondria pathways
Our previous report demonstrated that bovine ephemeral fever virus (BEFV)-infected cultured cells could induce caspase-dependent apoptosis. This study aims to further elucidate how BEFV activates the caspase cascade in bovine cells. BEFV replicated and induced apoptosis in Vero and Madin-Darby bovin...
Autores principales: | , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
EDP Sciences
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2785050/ https://www.ncbi.nlm.nih.gov/pubmed/19846041 http://dx.doi.org/10.1051/vetres/2009063 |
Sumario: | Our previous report demonstrated that bovine ephemeral fever virus (BEFV)-infected cultured cells could induce caspase-dependent apoptosis. This study aims to further elucidate how BEFV activates the caspase cascade in bovine cells. BEFV replicated and induced apoptosis in Vero and Madin-Darby bovine kidney (MDBK) cells, and a kinetic study showed a higher efficiency of replication and a greater apoptosis induction ability of BEFV in Vero cells. Src and c-Jun N-terminal kinase (JNK) inhibitor, but not extracellular signal-regulated kinase (ERK) or p38 inhibitor, alleviated BEFV-mediated cytopathic effect and apoptosis. In BEFV-infected Vero and MDBK cells, BEFV directly induced Src tyrosine-418 phosphorylation and JNK phosphorylation and kinase activity, which was inhibited specifically by SU6656 and SP600125, respectively. The caspase cascade and its downstream effectors, Poly (ADP-ribose) polymerase (PARP) and DFF45, were also activated simultaneously upon BEFV infection. In addition, cytochrome c, but not Smac/DIABLO, was released gradually from mitochondria after BEFV infection. SU6656 suppressed Src, JNK, and caspase-3 and -9 activation, as well as PARP and DFF45 cleavage; SP600125 reduced JNK and caspase-3 and -9 activation, as well as PARP and DFF45 cleavage. Taken together, these results strongly support the hypothesis that a Src-dependent JNK signaling pathway plays a key role in BEFV-induced apoptosis. The molecular mechanism identified in our study may provide useful information for the treatment of BEFV. |
---|