Cargando…
Specific pathways prevent duplication-mediated genome rearrangements
We have investigated the ability of different regions of the left arm of Saccharomyces cerevisiae chromosome V to participate in the formation of gross chromosomal rearrangements (GCRs). We found that the 4.2 kb HXT13 DSF1 region sharing divergent homology with chromosomes IV, X, and XIV, similar to...
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2785216/ https://www.ncbi.nlm.nih.gov/pubmed/19641493 http://dx.doi.org/10.1038/nature08217 |
_version_ | 1782174812669476864 |
---|---|
author | Putnam, Christopher D. Hayes, Tikvah K. Kolodner, Richard D. |
author_facet | Putnam, Christopher D. Hayes, Tikvah K. Kolodner, Richard D. |
author_sort | Putnam, Christopher D. |
collection | PubMed |
description | We have investigated the ability of different regions of the left arm of Saccharomyces cerevisiae chromosome V to participate in the formation of gross chromosomal rearrangements (GCRs). We found that the 4.2 kb HXT13 DSF1 region sharing divergent homology with chromosomes IV, X, and XIV, similar to mammalian segmental duplications, was “at-risk” for participating in duplication-mediated GCRs generated by homologous recombination. Numerous genes and pathways, including SGS1, TOP3, RMI1, SRS2, RAD6, SLX1, SLX4, SLX5, MSH2, MSH6, RAD10 and the DNA replication stress checkpoint requiring MRC1 and TOF1 were highly specific for suppressing these GCRs compared to GCRs mediated by single copy sequences. These results indicate that the mechanisms for formation and suppression of rearrangements occurring in regions containing “at risk” sequences differ from those occurring in regions of single copy sequence. This explains how extensive genome instability is prevented in eukaryotic cells whose genomes contain numerous divergent repeated sequences. |
format | Text |
id | pubmed-2785216 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2009 |
record_format | MEDLINE/PubMed |
spelling | pubmed-27852162010-02-20 Specific pathways prevent duplication-mediated genome rearrangements Putnam, Christopher D. Hayes, Tikvah K. Kolodner, Richard D. Nature Article We have investigated the ability of different regions of the left arm of Saccharomyces cerevisiae chromosome V to participate in the formation of gross chromosomal rearrangements (GCRs). We found that the 4.2 kb HXT13 DSF1 region sharing divergent homology with chromosomes IV, X, and XIV, similar to mammalian segmental duplications, was “at-risk” for participating in duplication-mediated GCRs generated by homologous recombination. Numerous genes and pathways, including SGS1, TOP3, RMI1, SRS2, RAD6, SLX1, SLX4, SLX5, MSH2, MSH6, RAD10 and the DNA replication stress checkpoint requiring MRC1 and TOF1 were highly specific for suppressing these GCRs compared to GCRs mediated by single copy sequences. These results indicate that the mechanisms for formation and suppression of rearrangements occurring in regions containing “at risk” sequences differ from those occurring in regions of single copy sequence. This explains how extensive genome instability is prevented in eukaryotic cells whose genomes contain numerous divergent repeated sequences. 2009-07-29 2009-08-20 /pmc/articles/PMC2785216/ /pubmed/19641493 http://dx.doi.org/10.1038/nature08217 Text en http://www.nature.com/authors/editorial_policies/license.html#terms Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms |
spellingShingle | Article Putnam, Christopher D. Hayes, Tikvah K. Kolodner, Richard D. Specific pathways prevent duplication-mediated genome rearrangements |
title | Specific pathways prevent duplication-mediated genome rearrangements |
title_full | Specific pathways prevent duplication-mediated genome rearrangements |
title_fullStr | Specific pathways prevent duplication-mediated genome rearrangements |
title_full_unstemmed | Specific pathways prevent duplication-mediated genome rearrangements |
title_short | Specific pathways prevent duplication-mediated genome rearrangements |
title_sort | specific pathways prevent duplication-mediated genome rearrangements |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2785216/ https://www.ncbi.nlm.nih.gov/pubmed/19641493 http://dx.doi.org/10.1038/nature08217 |
work_keys_str_mv | AT putnamchristopherd specificpathwayspreventduplicationmediatedgenomerearrangements AT hayestikvahk specificpathwayspreventduplicationmediatedgenomerearrangements AT kolodnerrichardd specificpathwayspreventduplicationmediatedgenomerearrangements |